Arts Universe and Philology

Arts Universe and Philology
The blog "Art, Universe, and Philology" is an online platform dedicated to the promotion and exploration of art, science, and philology. Its owner, Konstantinos Vakouftsis, shares his thoughts, analyses, and passion for culture, the universe, and literature with his readers.

Τετάρτη 25 Δεκεμβρίου 2013

Ο παράξενος δορυφόρος του Άρη, Φόβος. The strange satellite of Mars, Phobos

Mars Express HRSC (High Resolution Stereo Camera) image of Phobos taken on 9 January 2011 at a distance of 100 km with a resolution of 8.1 m/pixel. Use red-blue glasses to fully appreciate this image. Phobos is approximately 27 × 22 × 18 km and orbits Mars at a distance of 6000 km above the planet’s surface, or 9400 km from the centre of the planet. Copyright: ESA/DLR/FU Berlin (G. Neukum)

Στο βίντεο που ακολουθεί βλέπουμε τον δορυφόρο του Άρη, Φόβο, όπως τον φωτογράφησε η κάμερα υψηλής ανάλυσης του Mars Express της ESA. Οι εικόνες λήφθηκαν στο χρονικό διάστημα των δέκα ετών που διαρκεί η αποστολή.

Το πιο εντυπωσιακό χαρακτηριστικό στις εικόνες αυτές είναι οι παράλληλες ρίγες, καθώς επίσης και ο γιγαντιαίος κρατήρας διαμέτρου 9 χιλιομέτρων που κυριαρχεί στην μια πλευρά του δορυφόρου.

The High Resolution Stereo Camera (HRSC) onboard the ESA spacecraft Mars Express took this image of Phobos using the HRSC nadir channel on 7 March 2010, HRSC Orbit 7915. This image has additionally been enhanced photometrically for better bringing features in the less illuminated part. Resolution: about 4.4 meters per pixel. Copyright: ESA/DLR/FU Berlin (G. Neukum)

Σημειώνεται ότι οι διαστάσεις του Φόβου είναι 27 x 22 x 18 χιλόμετρα. Η προέλευση των αυλακώσεων είναι θέμα μεγάλης συζήτησης που δεν έχει ξεκαθαρίσει ακόμη. Το Mars Express, στις 29 Δεκεμβρίου 2013, θα προσεγγίσει τον Φόβο στην ελάχιστη μέχρι τώρα απόσταση – μόλις 45 χιλιόμετρα από αυτόν.

Πόσο μεγάλο είναι το σύμπαν; How Big is the Universe?

Called the eXtreme Deep Field, or XDF, the photo was assembled by combining 10 years of NASA Hubble Space Telescope photographs taken of a patch of sky at the center of the original Hubble Ultra Deep Field. The XDF is a small fraction of the angular diameter of the full Moon. Credit: NASA, ESA, G. Illingworth, D. Magee, and P. Oesch (University of California, Santa Cruz), R. Bouwens (Leiden University), and the HUDF09 Team 

Η πρόοδος της επιστήμης και της τεχνολογίας μας έχουν βοηθήσει να προσδιορίσουμε με αρκετά μεγάλη ακρίβεια την ηλικία του Σύμπαντος το οποίο γεννήθηκε με μία Μεγάλη Έκρηξη πριν από περίπου 13.8 δισεκατομμύρια χρόνια.

Τον απόηχο από τη Μεγάλη Έκρηξη τον λαμβάνουμε ακόμη στη μορφή μιας ακτινοβολίας μικροκυμάτων. Το πόσο όμως μεγάλωσε το Σύμπαν στη διάρκεια της ζωής του είναι κάτι που παραμένει άγνωστο στους επιστήμονες αφού εξαρτάται από ένα πλήθος παραγόντων τους οποίους δε μπορούν ακόμη να προσδιορίσουν.

Καθώς το φως ταξιδεύει με τη μεγαλύτερη δυνατή ταχύτητα στο Σύμπαν, γύρω από τον πλανήτη μας δημιουργείται μία νοητή σφαίρα με ακτίνα 13.8 δισεκατομμυρίων ετών φωτός, η οποία αντιστοιχεί στο μέρος του Σύμπαντος που μπορούμε να παρατηρήσουμε.

Το Σύμπαν όμως είναι μεγαλύτερο από τη σφαίρα αυτή, ενώ διαρκώς μεγεθύνεται αφού γνωρίζουμε πως διαστέλλεται και μάλιστα με επιταχυνόμενο ρυθμό. Έτσι, ένα άστρο που βλέπουμε σήμερα στις παρυφές του παρατηρήσιμου Σύμπαντος (13.8 δις έτη φωτός μακριά μας) στην πραγματικότητα απέχει πολύ περισσότερο (46 δις έτη φωτός) εξαιτίας της διαστολής του Σύμπαντος η οποία μπορεί να μεταφραστεί και ως διαστολή των ίδιων των αποστάσεων μεταξύ των αντικειμένων. Καταλήγουμε έτσι σε ένα Σύμπαν που γνωρίζουμε πως έχει διάμετρο τουλάχιστον ίση με 92 δισεκατομμύρια έτη φωτός, αν και δεν υπάρχει κανένας λόγος να μην είναι πολύ μεγαλύτερο.

Ένα ακόμη ερώτημα που σχετίζεται με τον προσδιορισμό του μεγέθους του Σύμπαντος είναι το σχήμα του. Από τη γεωμετρία του που μπορεί να είναι επίπεδη, κλειστή ή ανοικτή προκύπτουν τα αντίστοιχα σχήματα: επίπεδο, σφαίρα ή ένας αρνητικά κυρτωμένος χώρος που μοιάζει με σέλλα.

The detailed, all-sky picture of the infant universe created from nine years of WMAP data. Credit: NASA / WMAP Science Team

Αν και το πιο απίθανο από τα παραπάνω σενάρια είναι ένα επίπεδο Σύμπαν, καθώς απαιτεί μία συγκεκριμένη σταθερά που ονομάζεται παράμετρος πυκνότητας Ω να έχει ακριβώς την τιμή 1, οι τελευταίες ενδείξεις από διαστημικές παρατηρήσεις (WMAP, Planck) υποδεικνύουν πως το Σύμπαν μας είναι μάλλον επίπεδο, με περιθώριο λάθους μόνο 0.4%.
 
Σχετικό με το σχήμα του Σύμπαντος είναι και το εάν είναι άπειρο ή πεπερασμένο καθώς ένα σφαιρικό Σύμπαν έχει πεπερασμένο μέγεθος (αλλά όχι όρια), ενώ ένα ανοικτό (αρνητικά κυρτωμένο) Σύμπαν είναι άπειρο. Για την ώρα αλλά και για το προσεχές μέλλον λοιπόν παραμένει ανοικτό ακόμη και το ερώτημα του αν θα καταφέρουμε ποτέ να προσδιορίσουμε το μέγεθος του Σύμπαντος και τη σχετική μας θέση μέσα σε αυτό.

Χριστούγεννα στην τέχνη. Christmas in art

Giotto, La Nativité, Détail, 1302-1305

Giotto, La Nativité, 1302-1305 

Vitale da Bologna, Nativité, 1345, fragments des fresques de Mezzaratta

Maître Anonyme, Nativité, 1350-1425, Panneau de Polyptyque, 0,33x 0,21 cm

Nativité du Christ, 1401-1500, Détrempe sur bois, Eglise de la Nativité, Zvenigorod Moscou

Ferdinand Georg Waldmüller, A traveling family of beggars is rewarded by poor peasants on Christmas Eve, 1834

Eastman Johnson, Christmas-Time, The Blodgett Family, 1864

 Claude Monet, Christmas roses, 1883


Childe Hassam, Street Scene, Christmas Morning, 1892


 Jacek Malczewski, Christmas Eve in Siberia, 1892

Paul Gauguin, Nuit de Noël, Christmas Eve, 1894, Huile sur Toile, 72x83 cm, Collection Josefowitz 

Alphonse Mucha, Etudes, Couverture pour le numéro de Noël de Paris Illustré, Studies, Cover for the number of Christmas of Illustrated Paris, 1903

József Rippl-Rónai, Christmas, 1903

Edvard Munch, Christmas in the brothel, 1904


Carl Larsson, Detail Of Christmas Eve, 1906

Natalia Gontcharova, Nativité, 1910, Moscou, collection Kroupivnitsky

József Rippl-Rónai, Christmas, 1910

William Glackens, Christmas Shoppers, Madison Square, 1912, Crayon and watercolor on paper, 44.5 x 77 cm (17 1/2 x 31 in.), Museum of Art, Fort Lauderdale, Florida

Boris Kustodiev, Christmas tree bargain, 1918

Norman Rockwell, Le Trio de Noël, The Trio of Christmas, 1923, Huile sur Bois, 75x55 cm

Stanley Spencer, The Nursery (Christmas Stockings), 1926

Florina Stettheimer, Christmas, 1930

Salvador Dali, Allegory of an American Christmas, 1934


Norman Rockwell, Christmas Santa Reading Mail, 1935

Archibald John John Motel, Christmas Eve, 1945


Horace Pippin, Christmas Morning Breakfast, 1945

Salvador Dali, Christmas (Noel), 1946


Grandma Moses, A Tramp on Christmas Day, 1946


Andy Warhol, Fairy and Christmas Ornaments, c.1953-c.1955


Gene Davis, Christmas Tree, 1956


Grandma Moses,Waiting for Christmas, 1960

James Rosenquist, Win a new House this Christmas, 1964

Hundertwasser, Missed christmas, 1966

Norman Rockwell, La Grand-Rue de Stockbridge à Noël, The Main street of Stockbridge with Christmas, 1967

Norman Rockwell, Nuit de Noël à Bethléem, Christmas Eve in Bethlehem, 1970

Richard Hamilton, I'm dreaming of a black Christmas, 1971

Leonora Carrington, Christmas. Triptych, 1989

Ann James Massey, Christmas In Paris, 1997

Michael Owl, Christmas is coming

Vadim Anatolyevich Stolyarov, Christmas. Waiting for a miracle, 2017

Elena Evgenievna Utenkova-Tikhonova, Christmas tree, 2019

Δευτέρα 23 Δεκεμβρίου 2013

Μεσαιωνικά βιτρό στον Άρη! How medieval stained-glass is creating the ultimate SPACE camera: Nanoparticles used in church windows will help scientists see Mars' true colours under extreme UV light

British space scientists are using medieval stained-glass to build a 'state of the art' camera bound for Mars.

Αιώνες πριν από την έλευση των υπερσύγχρονων ηλεκτρονικών μικροσκοπίων και της νανοτεχνολογίας οι άνθρωποι ήξεραν να αναπτύσσουν νανοϋλικά. Βεβαίως δεν διέθεταν τα μέσα για να γνωρίζουν τις «μικροσκοπικές» ιδιότητες των δημιουργημάτων τους, είχαν όμως αυτό που λέμε «μάτι»: ήξεραν να ξεχωρίζουν την υψηλή ποιότητα και διέθεταν - ή φρόντιζαν να αποκτήσουν - την απαραίτητη τεχνογνωσία ώστε να την εξασφαλίσουν. Αυτό το μαρτυρούν τα υλικά που μας έχουν κληροδοτήσει και τα οποία παραμένουν αξεπέραστα. Ορισμένα από αυτά είναι αδύνατον να τα μιμηθούμε ακόμη και με τις σημερινές προωθημένες γνώσεις μας, ενώ άλλα χρησιμοποιούνται από τους ειδικούς ως πηγή έμπνευσης για την ανάπτυξη υλικών και μηχανημάτων της τελευταίας λέξης της τεχνολογίας.

Τι χρώμα έχει ο Κόκκινος Πλανήτης;

Η PanCam του ExoMars Rover του Ευρωπαϊκού Οργανισμού Διαστήματος θα απαθανατίσει τα φυσικά χρώματα του Άρη με τη βοήθεια της τεχνολογίας των μεσαιωνικών βιτρό. Researchers have taken divine inspiration from medieval stained-glass - because their colours haven't faded after hundreds of years being bombarded by UV radiation.

Το πιο πρόσφατο τέτοιο παράδειγμα είναι τα μεσαιωνικά βιτρό, τα οποία χρησιμοποιούνται ως βάση για την ανάπτυξη μιας κάμερας που θα πάει στον Άρη.

The 3D PanCam will be the science 'eyes' for Esa's Mars rover mission in 2019 and will feature a novel colour correction system to ensure that images sent back to earth truly represent the colours on Mars.

Η Πανοραμική Κάμερα (Panoramic Camera ή PanCam), όπως ονομάζεται, θα αποτελέσει βασικό «όπλο» στον εξοπλισμό του ExoMars Rover, του ρομποτικού εξερευνητή του Ευρωπαϊκού Οργανισμού Διαστήματος (ESA) που θα αναχωρήσει για τον Κόκκινο Πλανήτη το 2018 με αποστολή να αναζητήσει ίχνη παρούσης ή παρελθούσης ζωής σε αυτόν.

The small stained-glass coloured chips measure just 50 mm W 50 mm, are 18 mm high and weigh no more than 25 grams. Space scientists are using medieval stained-glass inside a camera being sent on a mission to Mars. Pictured here is the glass which is to be used in the camera.

Η PanCam έχει και αυτή μια αποστολή, να απαθανατίσει τα αρειανά τοπία με τα πραγματικά χρώματά τους. Αυτό όμως δεν είναι απλό, αφού η ατμόσφαιρα του Άρη έχει ελάχιστο ως καθόλου όζον και η υψηλή υπεριώδης ακτινοβολία μπορεί να ξεθωριάζει τα χρώματα των πλάνων.

Pictured here is (left) Dave Barnes holding the stained glass with Dr Stephen Pugh who is out testing the camera in the background.

Για να αποφύγουν αυτό το ενδεχόμενο, ερευνητές με επικεφαλής τον καθηγητή Ντέιβ Μπαρνς από το Πανεπιστήμιο του Αμπερέστγουιθ της Ουαλλίας αναπτύσσουν το PanCam Calibration Target (PCT), ένα σύστημα το οποίο θα «ρυθμίζει» τα χρώματα χρησιμοποιώντας εννέα χρωματιστά γυάλινα τσιπάκια εμπνευσμένα από τη νανοτεχνολογία που κρύβουν μέσα τους τα χρωματιστά τζάμια των παλιών εκκλησιών.

Νανοχρώματα στο γυαλί

Detail of a medieval window at Troyes Cathedral, France (1300s). Vitrail de la cathédrale Saint-Pierre-et-Saint-Paul de Troyes, bas-Cote Sud, 13ème siècle. Partie nettoyée.

Τα μεσαιωνικά βιτρό με τα λαμπερά, ανεξίτηλα χρώματά τους που δεν ξεθωριάζουν με το φως αλλά ούτε και με τον χρόνο είναι ένα από τα πλέον μελετημένα «αρχαία» νανοϋλικά και οι επιστήμονες γνωρίζουν σήμερα καλά τα μυστικά της κατασκευής τους. Παραδοσιακά το γυαλί φτιάχνεται από άμμο (δηλαδή διοξείδιο του πυριτίου), η οποία θερμαίνεται ώσπου να λιώσει σε πολύ υψηλές θερμοκρασίες (περίπου στους 1.350 βαθμούς Κελσίου). Με το πέρασμα του χρόνου οι τεχνίτες ανακάλυψαν ότι προσθέτοντας στην άμμο διάφορα συστατικά αυτή έλιωνε σε χαμηλότερες θερμοκρασίες. Οι υαλουργοί του Μεσαίωνα χρησιμοποιούσαν ένα μείγμα από άμμο, ανθρακικό νάτριο (σήμερα γνωστό ως σόδα πλυντηρίου), ασβέστη, ποτάσιο και οξείδιο του μολύβδου, το οποίο έλιωνε γύρω στους 800 βαθμούς Κελσίου.

Όταν ο χρυσός λάμπει... κόκκινα

Νανοσωματίδια του χρυσού και του αργύρου «παγιδεύουν» αντίστοιχα το κόκκινο και το κίτρινο χρώμα μέσα στο γυαλί των μεσαιωνικών βιτρό. Detail of a panel from Chartres Cathedral.

Για να χρωματίσουν το γυαλί, πρόσθεταν τις χρωστικές τους ενώ το μείγμα ήταν λιωμένο, έτσι ώστε να «παγιδεύσουν το χρώμα στη μήτρα του γυαλιού» όπως λέγεται στη σχετική ορολογία. Ανάλογα με την απόχρωση που ήθελαν να επιτύχουν, χρησιμοποιούσαν διαφορετικό χημικό ως χρωστική: το πράσινο και το καφέ, π.χ., φτιάχνονταν με οξείδια του σιδήρου, το βαθύ μπλε και το βιολετί με οξείδιο του κοβαλτίου, το «φωσφοριζέ» πρασινοκίτρινο που λαμπυρίζει τη νύχτα με οξείδιο του ουρανίου, το κόκκινο του ρουμπινιού με χλωριούχο χρυσό και το λαμπερό κίτρινο με νιτρικό άργυρο. 

Όπως ίσως θα παρατηρήσατε, οι πρώτες χρωστικές έχουν μια «συνέπεια» ως προς τις χημικές «χρωματικές» ιδιότητές τους, ο χρυσός και το ασήμι όμως όχι: αντί να δώσουν στο γυαλί χρυσό και ασημένιο χρώμα, όπως θα περίμενε κάποιος μη σχετικός με τις συγκεκριμένες τεχνικές, το κάνουν αντίστοιχα κόκκινο ή κίτρινο. Η αιτία, όπως έχουν διαπιστώσει σήμερα οι ειδικοί, είναι ότι οι αλληλεπιδράσεις μέσα στο λιωμένο μείγμα της άμμου στην περίπτωση των δύο αυτών ευγενών μετάλλων δημιουργούν νανοσωματίδια και τα υλικά στη νανοκλίμακα αποκτούν διαφορετικές ιδιότητες - εξ ου και τα «απρόσμενα» χρώματα. Σήμερα μάλιστα οι επιστήμονες έχουν ανακαλύψει ότι η τελική απόχρωση είναι ζήτημα μεγέθους και σχήματος των νανοσωματιδίων. Τα νανοσωματίδια χρυσού παράγουν κόκκινο χρώμα όταν είναι σφαιρικά και έχουν διάμετρο 25 νανομέτρων, ενώ με διάμετρο 50 νανομέτρων δίνουν πράσινο και με διάμετρο 100 νανομέτρων κίτρινο. Αντίστοιχα τα νανοσωματίδια του αργύρου όταν έχουν σφαιρικό σχήμα και διάμετρο 100 νανομέτρων παράγουν κίτρινο, όταν έχουν διάμετρο 40 νανομέτρων δίνουν μπλε, ενώ όταν έχουν τριγωνικό σχήμα και πλευρά 100 νανομέτρων παράγουν κόκκινο.

Το μαγικό κύπελλο του Λυκούργου

Το Κύπελλο του Λυκούργου - αριστερά στη σκιά και δεξιά κοντά σε φως. The stunning Lycurgus cup reveals a brilliant red when light passes through its sections of glass containing gold-silver alloyed nanoparticles. Photograph: British Museum Images

Μια υψηλού επιπέδου «γυάλινη» νανοτεχνολογία επιδεικνύει επίσης ένα αρχαιότερο αντικείμενο, το θαυμαστό ρωμαϊκό «κύπελλο του Λυκούργου». Το γυάλινο κύπελλο, το οποίο κατασκευάστηκε τον 4ο αι. μ.Χ., εκτός από την περίτεχνη διακόσμηση που αναπαριστά τον μυθικό βασιλιά της Θράκης Λυκούργο αιχμάλωτο της μαινάδας του Διονύσου Αμβροσίας, η οποία έχει μεταμορφωθεί σε άμπελο, έχει μια «μαγική» ιδιότητα: όταν το κοιτάζει κάποιος σε φυσικό φως, με το φως να πέφτει επάνω του, είναι πράσινο και αδιαφανές, όταν όμως το φως έρχεται από πίσω του γίνεται κόκκινο και ημιδιάφανο. Μόλις τη δεκαετία του 1990 οι επιστήμονες ανακάλυψαν ότι το κύπελλο αυτό, το οποίο αποτελεί περίοπτο έκθεμα του Βρετανικού Μουσείου, είναι ένα δείγμα της τελευταίας λέξης της ρωμαϊκής... νανοτεχνολογίας. Το οπτικό «εφέ», όπως διαπίστωσαν, προκαλείται επειδή οι ρωμαίοι τεχνίτες είχαν αναμείξει στο λιωμένο γυαλί ένα κολλοειδές αιώρημα με νανοσωματίδια χρυσού, δηλαδή ένα υγρό στο οποίο πρόσθεταν χρυσό τριμμένο σε υπερβολικά λεπτούς κόκκους (οι ερευνητές υποθέτουν ότι έτριβαν το μέταλλο τόσο ώστε να προκύψουν σωματίδια με μέγεθος του ενός χιλιοστού ενός κόκκου άμμου).

Το γεγονός αυτό, σε συνδυασμό με το ότι το κύπελλο είναι σκαλισμένο από ένα «μασίφ» κομμάτι γυαλιού (το πάχος του γυαλιού παίζει ρόλο στο οπτικό φαινόμενο) υποδηλώνει για τους ειδικούς πως, παρά το γεγονός ότι δεν μπορούσαν να γνωρίζουν τη νανοτεχνολογία, οι ρωμαίοι τεχνίτες ήξεραν πολύ καλά τι έκαναν - είχαν βρει δηλαδή μια τεχνική την οποία και ακολουθούσαν συνειδητά για να δημιουργήσουν εκπληκτικά αντικείμενα (άλλες έρευνες, όχι στο ίδιο το κύπελλο, αφού κάτι τέτοιο μπορεί να προκαλέσει φθορές, αλλά στο εργαστήριο, έχουν δείξει ότι αλλάζει επίσης χρώματα όταν γεμίζει με υγρό). Το κύπελλο του Λυκούργου είναι το μόνο «αρτιμελές» δείγμα διχροϊκού, όπως λέγεται, γυαλιού που έχει σωθεί ως τις μέρες μας, όμως θραύσματα που έχουν βρεθεί δείχνουν ότι η τεχνολογία αυτή εφαρμοζόταν σχετικά ευρέως.

Νανοκεραμικά στα αρχαιοελληνικά αγγεία

Το μαύρο-μπλε χρώμα στο μελανό υάλωμα των αρχαίων αττικών αγγείων προκύπτει από νανοκρυστάλλους μαγνητίτη. Heracles and Athena. Side A (red-figure) of an Attic bilingual amphora, 520–510 BC. From Vulci. Bilingual (black-figure ceramic and red-figure ceramic) amphora by the Andokides Painter, (Munich).

Ακόμη αρχαιότεροι «εμπειρικοί» γνώστες της νανοτεχνολογίας ήταν οι κεραμείς της αρχαίας Αθήνας. Το περίφημο μελανό υάλωμα των μελανόμορφων και ερυθρόμορφων αττικών αγγείων, που μεσουράνησαν στον αρχαίο κόσμο από τον 7ο ως τον 4ο αι. π.Χ., αποτελεί επίσης ένα νανοϋλικό το οποίο δημιουργούνταν με μια συνειδητή και άκρως συνεπή τεχνική. Η βαφή των αγγείων ήταν και αυτή ένα κολλοειδές αιώρημα από άργιλο, η οποία ήταν «διαλεγμένη» έτσι ώστε να έχει συγκεκριμένη χημική σύσταση. Μια επίσης πολύ συγκεκριμένη τεχνική όπτησης των αγγείων σε τρία στάδια με συγκεκριμένες θερμοκρασίες έκανε τη βαφή αυτή να υαλοποιείται «κλείνοντας» μέσα της νανοκρυστάλλους μαγνητίτη, οι οποίοι τής έδιναν το χαρακτηριστικό μαύρο-μπλε χρώμα. Το μελανό υάλωμα των αττικών αγγείων έχει αποτελέσει επί χιλιετίες αντικείμενο ατυχών προσπαθειών μίμησης και επισταμένων μελετών. Η «νανοδιάστασή» του ανακαλύφθηκε τη δεκαετία του 1990 από έλληνες ερευνητές, ενώ πρόσφατα προκάλεσε το ενδιαφέρον μιας θυγατρικής της NASA, η οποία προσπαθεί να αντλήσει από αυτό έμπνευση για την ανάπτυξη βελτιωμένων κεραμικών επενδύσεων για τα διαστημόπλοια της αμερικανικής διαστημικής υπηρεσίας.

Umbrian Pottery.

«Νανοκεραμικά» έχουν επίσης δημιουργήσει πριν από περισσότερο από μία χιλιετία οι κινέζοι κεραμείς, οι οποίοι χρησιμοποιούσαν νανοσωματίδια χρυσού σε μια βαφή η οποία έδινε κόκκινο χρώμα στην πορσελάνη τους. Πολύ αργότερα, λίγο πριν από την Αναγέννηση, οι κεραμείς της Ούμπρια στην Ιταλία ανέπτυξαν μια άλλη «νανοπροσέγγιση», δίνοντας στα κεραμικά τους ιριδίζον υάλωμα με νανοσωματίδια χαλκού και αργύρου, τα οποία ανακλούν το φως σε διαφορετικά μήκη κύματος.