Arts Universe and Philology

Arts Universe and Philology
The blog "Art, Universe, and Philology" is an online platform dedicated to the promotion and exploration of art, science, and philology. Its owner, Konstantinos Vakouftsis, shares his thoughts, analyses, and passion for culture, the universe, and literature with his readers.

Σάββατο 13 Μαΐου 2017

Μια σύνθεση τζαζ από το σύστημα εξωπλανητών ΤRAPPIST-1. Exoplanet Puzzle Cracked by Jazz Musicians

A system of seven Earth-like exoplanets appeared to be unstable. Now their orbits have been rewritten in the music of the spheres.

Πριν από τρεις μήνες περίπου ανακοινώθηκε η ανακάλυψη του πλανητικού συστήματος TRAPPIST-1, το οποίο διαθέτει επτά εξωπλανήτες στο μέγεθος της Γης. Το σύστημα απέχει περίπου 40 έτη φωτός από τη Γη και βρίσκεται στον Αστερισμό του Υδροχόου. Τουλάχιστον τρεις από αυτούς τους εξωπλανήτες μπορεί να διαθέτουν ωκεανούς νερού στην επιφάνειά τους, συνεπώς θεωρούνται  ιδανικοί «στόχοι» για την αναζήτηση εξωγήινης ζωής στο μέλλον.

Ο Daniel Tamayo από το Πανεπιστημίου του Toronto και οι συνεργάτες του μελέτησαν τις συντονισμένες τροχιές των πλανητών του πολύπλοκου συστήματος TRAPPIST-1. Οι πλανήτες ενός συστήματος λέμε ότι κινούνται σε «συντονισμένες» τροχιές» όταν οι λόγοι των περιόδων περιφοράς τους έχουν το ιδιαίτερο χαρακτηριστικό να βρίσκονται πολύ κοντά σε αναλογίες ακεραίων αριθμών (π.χ. 3:2, 4:3). Υπολόγισαν ότι το σύστημα σε περίπου ένα εκατομμύριο χρόνια θα γίνει ασταθές, ένα χρονικό διάστημα πολύ μικρότερο από τα δισεκατομμύρια έτη που πέρασαν από τον σχηματισμό του! Σε μια νέα δημοσίευση οι προσομοιώσεις τους δείχνουν ότι τελικά το σύστημα θα παραμείνει σταθερό για περίπου 50 εκατομμύρια χρόνια. Όμως ακόμα κι αυτό το νούμερο δεν μπορεί εξηγήσει το γιατί εμείς βλέπουμε ακόμα μια σταθερή διάταξη.

Ενώ λοιπόν ο Tamayo επεξεργαζόταν τις προσομοιώσεις του για το εξωπλανητικό σύστημα TRAPPIST-1, προσεγγίστηκε από τον Matt Russo, έναν συνάδελφο ερευνητή αλλά και κιθαρίστα της τζαζ, ο οποίος παρατήρησε ότι οι συντονισμοί του TRAPPIST-1 έδειχναν οικείοι με την μουσική θεωρία. Έτσι, οι Tamayo, Russo, και ο μουσικός Andrew Santaguida συνεργάστηκαν μεταξύ τους για να μετατρέψουν τις κινήσεις των εξωπλανητών του συστήματος TRAPPIST-1 σε μουσική σύνθεση.

Ο έβδομος πλανήτης h ολοκληρώνει μια περιφορά γύρω από το άστρο του κάθε 3 εβδομάδες. Αυξάνοντας την συχνότητα περιφοράς του 200 εκατομμύρια φορές και εκφράζοντας την σε ηχητικά κύματα, τότε παίρνουμε τη νότα ντο. Στη συνέχεια, εφόσον ο λόγος των περιόδων των εξωπλανητών είναι γνωστός (και μάλιστα σε αναλογία ακεραίων αριθμών), η συχνότητα περιφοράς του κάθε εξωπλανήτη αντιστοιχείται με κάποια νότα του πενταγράμμου. Όλες αυτές οι νότες μαζί σχηματίζουν την ματζόρε ένατη συγχορδία.

Στη συνέχεια, πρόσθεσαν στην σύνθεση και τον ρυθμό των τυμπάνων, που ακούγονται κάθε φορά που ένας εσωτερικός πλανήτης ξεπερνά τον εξωτερικό του γείτονα – τότε η βαρυτική δύναμη μεταξύ των δυο πλανητών παίρνει την μέγιστη τιμή της. Σε σύγκριση με τα κρουστά που παίζει ένας μουσικός, προκύπτει ένας σουπερ-δημιουργικός ντράμερ που παράγει έναν εντελώς πρωτότυπο ρυθμό. Η ίδια ερευνητική ομάδα σχεδιάζει να κάνει το ίδιο και με τους μεγάλους δορυφόρους του Δία. Αν και εκεί δεν παίρνουμε τον πλούσιο ήχο του συστήματος των εξωπλανητών.

We used a numerical simulation of TRAPPIST-1 to play a piano note every time a planet passes in front of the star (a 'transit') and a drum every time a faster inner planet overtakes its outer neighbour (a 'conjunction'). To assign pitches, we simply scaled up the orbital frequencies by 212 million times to bring them into the human hearing range. The TRAPPIST-1 system is a resonant chain which means that the periods of the planets' orbits are very close to whole number ratios (ex. 3:2, 4:3). This is exactly what makes two musical notes sound consonant when played together and as a result, TRAPPIST-1 creates a beautiful, but slightly twisted harmony. For the same reason, the transits and conjunctions occur in a steady, repeating pattern. The crackling sound heard towards the end is Kepler's K2 lightcurve data of the star's observed brightness sped up by many times. Created by Matt Russo, Dan Tamayo and Andrew Santaguida 2017.

Τελικά το πλανητικό σύστημα TRAPPIST-1, εκτός από το ενδιαφέρον που έχει από δυναμική άποψη, μας δίνει την ωραία και πρωτότυπη σύνθεση που ακούγεται στο βίντεο που ακολουθεί. Ο ήχος κροταλίσματος στο τέλος προκύπτει από την καμπύλη φωτός των δεδομένων της λαμπρότητας του μητρικού άστρου.

Άραγε θα βρεθεί εξωπλανητικό σύστημα που να αναπαράγει μια σύνθεση(*) σαν αυτή που ακούγεται στο φινάλε της ταινίας Whiplash;

(*) «Caravan» σύνθεση των Duke Ellington και Juan Tizol.


Παρασκευή 12 Μαΐου 2017

Εξωπλανήτης μοιάζει με «θερμό» Ποσειδώνα. Warm Neptune HAT-P-26b

Ο HAT-P-26b βρίσκεται πιο κοντά στο άστρο του και έχει ατμόσφαιρα με υδρατμούς και εξωτικά νέφη. Καλλιτεχνική απεικόνιση του εξωπλανήτη HAT-P-26b που έχει μέγεθος σαν του Ποσειδώνα αλλά βρίσκεται πιο κοντά στο άστρο του από ό,τι ο γίγαντας αερίων του ηλιακού μας συστήματος. The atmosphere of the Neptune-mass exoplanet HAT-P-26b is unexpectedly primitive, composed primarily of hydrogen and helium. By combining observations from Hubble and Spitzer space telescopes, Wakeford et al determined that, unlike Neptune and Uranus, the exoplanet has relatively low metallicity. Image credit: NASA’s Goddard Space Flight Center

Αμερικανοί και Βρετανοί επιστήμονες ανακάλυψαν μια πρωτόγονη ατμόσφαιρα με υδρατμούς και εξωτικά νέφη γύρω από ένα μακρινό εξωπλανήτη που έχει μέγεθος περίπου όσο και ο Ποσειδώνας του ηλιακού μας συστήματος. Είναι όμως πολύ πιο ζεστός, επειδή περιφέρεται σε τροχιά πιο κοντινή στο άστρο του από ό,τι ο παγωμένος Ποσειδώνας γύρω από τον Ήλιο.

Ένας χρόνος σε τέσσερις μέρες

Ο εξωπλανήτης HAT-P-26b βρίσκεται σε απόσταση περίπου 430 ετών φωτός από τη Γη και ολοκληρώνει μία πλήρη περιφορά γύρω από το άστρο του (η διάρκεια του έτους του) σε μόνο 4,2 γήινες μέρες.

Η ατμόσφαιρά του αποτελείται σχεδόν αποκλειστικά από υδρογόνο και ήλιο, σε ποσότητες πολύ μεγαλύτερες από ό,τι του Ποσειδώνα. Απουσιάζουν σχεδόν τα βαρύτερα χημικά στοιχεία και μέταλλα από την ατμόσφαιρά του, σε σχέση με αυτό που θα περίμεναν οι αστρονόμοι για έναν τόσο μεγάλο πλανήτη. Αυτό μάλλον σημαίνει ότι ο HAT-P-26b σχηματίστηκε κοντύτερα στο μητρικό άστρο του από ό,τι οι αέριοι γίγαντες πλανήτες στο δικό μας ηλιακό σύστημα.

Γκρίζος ουρανός

Οι ερευνητές, με επικεφαλής τον καθηγητή αστροφυσικής Ντέιβιντ Σινγκ του βρετανικού Πανεπιστημίου του Έξετερ και τη Χάνα Γουέικφορντ της αμερικανικής Διαστημικής Υπηρεσίας (NASA), που έκαναν τη σχετική δημοσίευση στο περιοδικό «Science», πραγματοποίησαν τις παρατηρήσεις τους με τα αμερικανικά διαστημικά τηλεσκόπια Hubble και Spitzer.

«Η νέα συναρπαστική ανακάλυψη δείχνει ότι υπάρχει πολύ μεγαλύτερη ποικιλία στις ατμόσφαιρες των εξωπλανητών από ό,τι νομίζαμε προηγουμένως» δήλωσε ο Σινγκ.

Όσο για τον ουρανό του εξωπλανήτη, οι επιστήμονες εκτιμούν ότι υπάρχουν διάσπαρτα ασυνήθιστα σύννεφα όχι υδρατμών αλλά από κάποια άλλη ουσία, που θα δίνει μια γκρίζα και όχι μπλε απόχρωση στον ουρανό.




Πέμπτη 11 Μαΐου 2017

Ο νέος γραμμικός επιταχυντής του CERN έτοιμος να μπει στην πρίζα. CERN unveils new linear accelerator

Ο γραμμικός επιταχυντής αποτελεί το πρώτο κρίσιμο βήμα στην “αλυσίδα έγχυσης” σωματιδίων στον LHC, όπως ονομάζουν οι επιστήμονες την προετοιμασία των δεσμών που θα μπουν στη σήραγγα του LHC. Ο λόγος είναι πως αυτό το μηχάνημα αναλαμβάνει την παραγωγή και την αρχική επιτάχυνση των σωματιδίων, ενώ επίσης καθορίζει την ένταση και την πυκνότητα που θα έχουν οι δέσμες. Linac 4, CERN's newest accelerator acquisition since the Large Hadron Collider (LHC), was inaugurated today. (Image: M.Brice/CERN)

Ο Ευρωπαϊκός Οργανισμός Πυρηνικών Ερευνών (CERN) στα γαλλο-ελβετικά σύνορα εγκαινίασε το νέο γραμμικό επιταχυντή του Linac 4. Το νέο απόκτημα θα τροφοδοτήσει με ακτίνες υψηλότερης ενέργειας τον μεγάλο επιταχυντή αδρονίων (LHC), ώστε ο τελευταίος να αυξήσει σημαντικά τη φωτεινότητά του το 2021.

Μετά από μία μακρά περίοδο δοκιμών, ο Linac 4 θα συνδεθεί με τον μεγάλο επιταχυντή LHC, όταν ο τελευταίος τεθεί εκτός λειτουργίας για την καθιερωμένη τεχνική συντήρηση και αναβάθμιση τον χειμώνα της περιόδου 2019-2020.

Ο Linac 4 θα αντικαταστήσει τον γραμμικό επιταχυντή Linac 2, ο οποίος λειτουργεί από το 1978 και θα γίνει πλέον αυτός το πρώτο στάδιο στην αλυσίδα επιταχυντών του CERN, παράγοντας ακτίνες πρωτονίων για μια ευρεία γκάμα πειραμάτων.

Ο γραμμικός επιταχυντής είναι το πρώτο και θεμελιώδες βήμα στην αλυσίδα επιτάχυνσης των σωματιδίων, καθώς σε αυτόν παράγονται τα πρώτα σωματίδια και δέχονται την αρχική επιτάχυνσή τους. Ο Linac 4 έχει μήκος σχεδόν 90 μέτρων (έναντι 27 χιλιομέτρων του LHC), βρίσκεται σε βάθος 12 μέτρων κάτω από την επιφάνεια και χρειάσθηκε σχεδόν δέκα χρόνια για να ολοκληρωθεί, με κόστος περίπου 90 εκατ. ευρώ.

Linear accelerator 4 (Linac 4) is designed to boost negative hydrogen ions to high energies. It is scheduled to become the source of proton beams for the Large Hadron Collider (LHC) after the long shutdown in 2019-2020. Linac 4 will accelerate ions to 160 MeV to prepare them to enter the Proton Synchrotron Booster, which is part of the LHC injection chain. Negative hydrogen ions are pulsed through the accelerator for 400 microseconds at a time. Credit: CERN

Ο Linac 4 θα στέλνει αρνητικά ιόντα υδρογόνου, αποτελούμενα από ένα άτομο υδρογόνου με δύο ηλεκτρόνια, στο σύγχροτρο πρωτονίων (Proton Synchrotron Booster-PSB) του CERN, το οποίο θα επιταχύνει κι άλλο τα αρνητικά ιόντα, ενώ θα απομακρύνει τα ηλεκτρόνιά τους.

Η παραγόμενη ακτίνα του Linac 4 θα έχει ενέργεια έως 160 MeV, υπετριπλάσια σε σχέση με του Linac 2. Αφενός η αύξηση της ενέργειας και αφετέρου η χρήση ιόντων υδρογόνου θα διπλασιάσει την ενέργεια της ακτίνας που θα φθάνει στον μεγάλο επιταχυντή LHC, συμβάλλοντας καθοριστικά στην μελλοντική αύξηση της φωτεινότητας του τελευταίου.

Η φωτεινότητα (luminosity) είναι μια καθοριστική παράμετρος που δείχνει πόσο μεγάλος είναι ο αριθμός των σωματιδίων, τα οποία συγκρούονται σε ένα συγκεκριμένο χρονικό διάστημα. Η μέγιστη φωτεινότητα του LHC σχεδιάζεται να πενταπλασιαθεί έως το 2025, με στόχο τη δημιουργία του «Μεγάλου Επιταχυντή Αδρονίων Υψηλής Φωτεινότητας» (High-Luminosity LHC).

Έτσι, τα πειράματα του LHC θα μπορούν να συλλέξουν περίπου δέκα φορές περισσότερα δεδομένα κατά την περίοδο 2025-2035. Αυτό θα επιτρέψει στους φυσικούς να κάνουν πιο ακριβείς μετρήσεις για τα θεμελιώδη σωματίδια από ό,τι σήμερα και ίσως να ανοίξουν ένα «παράθυρο» σε άγνωστες έως τώρα διαδικασίες της φύσης πέρα από το «Καθιερωμένο Πρότυπο» (Standard Model), όπως η σκοτεινή ύλη και ενέργεια ή οι έξτρα χωροχρονικές διαστάσεις.

Από την άλλη, η τεχνολογία του γραμμικού επιταχυντή Linac 4 αναμένεται να αξιοποιηθεί σε μικρότερα, ακόμη και φορητά μηχανήματα, ώστε να έχει και άλλες πρακτικές εφαρμογές, όπως στη βιοϊατρική έρευνα (π.χ. δημιουργία ισοτόπων για τη διάγνωση του καρκίνου) και στην ανάλυση έργων τέχνης (π.χ. πινάκων στα μουσεία).

Το Λούβρο του Παρισιού είναι το μόνο μουσείο στον κόσμο που ήδη διαθέτει στο υπόγειό του τον δικό του μικρό επιταχυντή. Όταν κλείνει τις Τρίτες, διάφορα έργα τέχνης μεταφέρονται εκεί για ανάλυση, μεταξύ άλλων για να αποκαλυφθεί αν είναι γνήσια, από ποιά υλικά κατασκευάσθηκαν και πόσο παλιά είναι.


Οι αρχαιότερες ενδείξεις μικροβιακής ζωής στην ξηρά προ 3,48 δισ. Ετών. Earliest Signs of Microbial Life on Land Found in 3.48-Billion-Year-Old Hot Spring Deposits

Η ζωή μπορεί πράγματι να γεννήθηκε σε μία ζεστή λιμνούλα. Επιστήμονες ανακάλυψαν ίχνη απολιθωμάτων της πιο πρώιμης ζωής με «στεριανή» προέλευση. Οι σφαιρικές φυσαλίδες που διασώζονται σε βράχους ηλικίας 3,48 δισεκατομμυρίων ετών στην απομονωμένη περιοχή Πιλμπάρα της Δυτικής Αυστραλίας περιέχουν στοιχεία για τις αρχέγονες μορφές ζωής που εμφανίστηκαν στη Γη. Fossil evidence of early microbial life has been found in ancient hot spring deposits in the Dresser Formation in the Pilbara Craton, Western Australia, that date back approximately 3.48 billion years. A paper reporting this discovery is published in the journal Nature Communications. Spherical bubbles preserved in 3.48 billion-year-old hot spring deposits in the Dresser Formation provide evidence for early microbial life having lived on land. Image credit: University of New South Wales

Πού ήταν η κοιτίδα της ζωής: Στην ξηρά ή μέσα στη θάλασσα; Οι περισσότεροι επιστήμονες τείνουν προς τη δεύτερη εκδοχή, αλλά μια νέα ανακάλυψη γέρνει τη ζυγαριά προς την πρώτη - αν και σίγουρα δεν θα είναι η οριστική απάντηση στο κρίσιμο αυτό ερώτημα.

Επιστήμονες ανακάλυψαν σε πανάρχαια κοκκινωπά ηφαιστειακά πετρώματα της Δυτικής Αυστραλίας ίχνη απολιθωμάτων της πιο πρώιμης ζωής με «στεριανή» προέλευση που έχει βρεθεί μέχρι σήμερα, καθώς χρονολογούνται προ περίπου 3,48 δισεκατομμυρίων ετών.

Την εποχή εκείνη, η συγκεκριμένη περιοχή μπορεί να ήταν ένα μικρό ηφαιστειακό νησί γεμάτο θερμοπηγές και λιμνούλες. Σε κάποια από αυτές ίσως ξεκίνησε η ζωή στη Γη.

Έως σήμερα, οι αρχαιότερες ενδείξεις μικροβιακής ζωής με προέλευση την ξηρά προέρχονταν από απολιθώματα σε πετρώματα της Νότιας Αφρικής με ηλικία 2,7 έως 2,9 δισεκατομμυρίων ετών.

Αν η ανακάλυψη στην κατάξερη και απομονωμένη περιοχή Πιλμπάρα της Αυστραλίας επιβεβαιωθεί, τότε ίσως δικαιώσει τον Κάρολο Δαρβίνο, ο οποίος το 1.871 δήλωσε ότι η ζωή πιθανότατα ξεκίνησε σε κάποια θερμή λιμνούλα της ξηράς και όχι στη θάλασσα.

Οι ερευνητές από την Αυστραλία και τη Νέα Ζηλανδία, με επικεφαλής την γεωεπιστήμονα Τάρα Ντζόκιτς του Πανεπιστημίου της Νέας Νότιας Ουαλίας (UNSW) στο Σίδνεϊ, έκαναν τη σχετική δημοσίευση στο περιοδικό Nature Communications.

Όπως είπε η Ντζόκιτς, «τα συναρπαστικά ευρήματα δεν επεκτείνουν μόνο κατά τρία δισεκατομμύρια χρόνια τις αρχαιότερες ενδείξεις ζωής σε θερμοπηγές, αλλά επίσης δείχνουν ότι η ζωή κατοικούσε στην ξηρά πολύ νωρίτερα, περίπου 580 εκατομμύρια χρόνια παλαιότερα από ό,τι θεωρούσαμε έως τώρα».

Αυτό, πρόσθεσε, «μπορεί να υποδηλώνει την προέλευση της ζωής σε θερμοπηγές γλυκού νερού στην ξηρά μάλλον, παρά την πιο ευρέως διαδεδομένη ιδέα ότι η ζωή αναπτύχθηκε αρχικά στον ωκεανό και μετά προσαρμόσθηκε στην ξηρά».

Αυτές είναι οι δύο κυριότερες σήμερα θεωρίες για το πώς ξεκίνησε η ζωή στον πλανήτη μας: είτε σε υδροθερμικές «καμινάδες» στα βάθη των θαλασσών, είτε σε μια ζεστή λιμνούλα στην ξηρά. Αν όντως ισχύει η δεύτερη θεωρία, τότε αυξάνονται οι πιθανότητες εύρεσης ιχνών ζωής και στον Άρη, όπου έχουν εντοπιστεί γεωλογικές ενδείξεις παλαιότερων θερμοπηγών.

Schematic model of active Dresser hot spring system and its fossilized mineralized remnants. Left: proximal to distal hot spring facies, with spring vent fed by subsurface hydrothermal fluids. Right: preserved sequence of hot spring facies deposits, geographically patchy in nature, with spring vent infilled by late-stage crystallization of barite. Image credit: Djokic et al, doi: 10.1038/ncomms15263

«Τα πετρώματα της Πιλμπάρα έχουν περίπου την ίδια ηλικία με τον φλοιό του Άρη, πράγμα που καθιστά τις πρώην θερμοπηγές του "κόκκινου" πλανήτη τον ιδανικό στόχο για την εύρεση απολιθωμένης ζωής εκεί» δήλωσε ο καθηγητής Βαν Κράνεντοκ, διευθυντής του Αυστραλιανού Κέντρου Αστροβιολογίας και επικεφαλής της Σχολής Βιολογικών Επιστημών και Γεωεπιστημών του UNSW.

Οι ερευνητές έκαναν αναλύσεις που δείχνουν ότι τα πετρώματα στην Πιλμπάρα σχηματίστηκαν στην ξηρά και όχι μέσα στο νερό. Συνεπώς και τα ίχνη των μικροοργανισμών που βρέθηκαν -αλλά όχι τα ίδια τα μικρόβια- όπως οι στρωματόλιθοι (διαστρωματωμένοι γεωλογικοί σχηματισμοί που δημιουργούνται από βακτήρια) και οι φυσαλίδες (πιθανώς μικροβιακής προέλευσης) μέσα σε αυτά τα πετρώματα, εκτιμάται ότι δεν έχουν θαλάσσια αλλά «στεριανή» προέλευση.

Με άλλα λόγια, η ζωή αρχικά μπορεί να γεννήθηκε στην ξηρά και μετά να διείσδυσε στη θάλασσα, από όπου, πολύ πιο εξελιγμένη πια, αναδύθηκε ξανά μετά από δισεκατομμύρια χρόνια.

Τα παλαιότερα ίχνη ζωής στη Γη, ηλικίας περίπου 3,7 δισεκατομμυρίων ετών, πιθανώς είναι αυτά που έχουν βρεθεί σε απολιθώματα στρωματολίθων (κυανοβακτηρίων) στη Γροιλανδία, όπου είχαν δημιουργηθεί σε ρηχή θάλασσα. Στο Κεμπέκ του Καναδά έχουν βρεθεί ακόμη παλαιότερες αλλά λιγότερο σίγουρες ενδείξεις για μικροοργανισμούς ηλικίας 4,28 δισεκατομμυρίων ετών (η ίδια η Γη σχηματίσθηκε πριν από περίπου 4,5 δισ. χρόνια).

Όμως, όπως συμβαίνει πάντα με ανακοινώσεις σχετικά με τόσο πρώιμες ενδείξεις ζωής στη Γη, άλλοι επιστήμονες εκφράζουν επιφυλάξεις για το αν όντως τα ίχνη στα πετρώματα έχουν δημιουργηθεί από μικρόβια (από τη στιγμή που τα ίδια είναι αδύνατο να βρεθούν) ή από άλλες διαδικασίες.


Τετάρτη 10 Μαΐου 2017

Η κάνναβη «ελιξίριο» της ζωής του εγκεφάλου! Cannabis reverses aging processes in the brain

Émile Bernard, Woman Smoking Hashish, 1900. Memory performance decreases with increasing age. Cannabis can reverse these ageing processes in the brain. This was shown in mice by scientists at the University of Bonn with their colleagues at The Hebrew University of Jerusalem (Israel). Old animals were able to regress to the state of two-month-old mice with a prolonged low-dose treatment with a cannabis active ingredient. This opens up new options, for instance, when it comes to treating dementia.

Οι ερευνητές του Ινστιτούτου Μοριακής Ψυχιατρικής του Πανεπιστημίου της Βόννης και του Εβραϊκού Πανεπιστημίου της Ιερουσαλήμ, με επικεφαλής τον καθηγητή Αντρέας Τζίμερ, δημοσίευσαν πρόσφατα στο ιατρικό περιοδικό «Nature Medicine» έρευνά τους σύμφωνα με την οποία ο εγκέφαλος των γερασμένων ζώων ηλικίας ενάμισι έως δύο ετών ξανάνιωσε μετά από την χορήγηση επί ένα μήνα χαμηλής δόσης τετραϋδροκανναβινόλης (THC). Η χορήγηση της κύριας ψυχοδραστικής ουσίας της κάνναβης οδήγησε τα ζώα σε βελτίωση που προσομοίαζε τη μνήμη ηλικίας μόλις δύο μηνών.

Με δύο λόγια τα σχετικά τεστ μάθησης και μνήμης, έδειξαν ότι τα πειραματόζωα είχαν πλέον νεανικές επιδόσεις.

Άγνωστο ακόμη εάν κάτι ανάλογο μπορεί να ισχύσει και για τους ανθρώπους, αλλά οι επιστήμονες ελπίζουν ότι μπορεί να ανοίξουν νέοι δρόμοι ακόμη και για τη θεραπεία της άνοιας. Έτσι σχεδιάζουν να ξεκινήσουν μέσα στο 2017 την κλινική δοκιμή σε ανθρώπους για να ελέγξουν κατά πόσο η THC μπορεί να «φρενάρει» τη γήρανση του ανθρώπινου εγκεφάλου.

Prof. Dr. Andreas Zimmer (left) and the North Rhine-Westphalia science minister Svenja Schulze (centre) in the lab of the Institute of Molecular Psychiatry at University of Bonn. Credit: © Photo: Volker Lannert/Uni Bonn

Στα συγκεκριμένα πειράματα η THC αύξησε τον αριθμό των συνδέσεων μεταξύ των εγκεφαλικών κυττάρων (νευρώνων) στον ιππόκαμπο, στην περιοχή του εγκεφάλου που παίζει ζωτικό ρόλο στη μνήμη. Τα οφέλη διήρκεσαν επί εβδομάδες και κανένα ζώο δεν εμφάνισε τις παρενέργειες ενός ναρκωτικού.

Η κάνναβη ως ναρκωτικό κατηγορείται ότι μειώνει την ικανότητα των ανθρώπων να θυμούνται και να προσέχουν. Όμως, σύμφωνα με τους Γερμανούς επιστήμονες είναι πιθανό σε χαμηλές αλλά συνεχείς δόσεις να επιφέρει το αντίθετο αποτέλεσμα.

Διαβάστε περισσότερα για την αποτελεσματικότητα της φαρμακευτικής κάνναβης εδώ: Εναλλακτική Δράση

Πηγές: Andras Bilkei-Gorzo, Onder Albayram, Astrid Draffehn, Kerstin Michel, Anastasia Piyanova, Hannah Oppenheimer, Mona Dvir-Ginzberg, Ildiko Rácz, Thomas Ulas, Sophie Imbeault, Itai Bab, Joachim L Schultze, Andreas Zimmer. A chronic low dose of Δ9-tetrahydrocannabinol (THC) restores cognitive function in old miceNature Medicine, 2017; DOI: 10.1038/nm.4311 - Tvxs



Έλληνας επιστήμονας βρήκε εξήγηση γιατί οι κομήτες παράγουν αέριο οξυγόνο. Caltech Chemical Engineer Explains Oxygen Mystery on Comets

Κωνσταντίνος Γιαπής και ο συνεργάτης του Yunxi Yao έδειξαν πειραματικά πως παράγεται μοριακό οξυγόνο στην επιφάνεια των κομητών. Ρίχνοντας μόρια νερού (αριστερά) με μεγάλη ταχύτητα σε επιφάνειες από οξείδια του πυριτίου και σιδήρου παρατήρησαν την παραγωγή οξυγόνου. Τα άτομα του οξυγόνου στην εικόνα παριστάνονται με κόκκινο χρώμα και του υδρογόνου με μπλε. Σύμφωνα με τον Γιαπή παρόμοιες συνθήκες υπάρχουν στον κομήτη 67P/Churyumov–Gerasimenko, όπου το διαστημικό σκάφος Rosetta ανίχνευσε μοριακό οξυγόνο. Konstantinos Giapis has shown how molecular oxygen may be produced on the surface of comets using lab experiments. He and his postdoctoral scholar Yunxi Yao fired high-speed water molecules (left) at oxidized silicon and iron surfaces, observing the production of a plume that included molecular oxygen. Oxygen atoms are red, and hydrogen, blue. Giapis says similar conditions exist on the comet 67P/Churyumov–Gerasimenko, where the European Space Agency's Rosetta mission detected molecular oxygen. Credit: Caltech

Οι κομήτες -όπως και τα δέντρα- «εκπνέουν» οξυγόνο γύρω τους. Μέχρι σήμερα οι επιστήμονες δεν ήσαν σίγουροι γιατί αυτό συμβαίνει, αλλά ένας Έλληνας χημικός μηχανικός της διασποράς έχει πλέον βρει μια πειστική εξήγηση, η οποία μάλιστα έχει σημαντικές προεκτάσεις και επιπτώσεις για την αστροβιολογία και την αναζήτηση ζωής σε εξωπλανήτες.

Κάνοντας εργαστηριακά πειράματα σε συνθήκες που προσομοιάζουν στο διάστημα, ο καθηγητής Κωνσταντίνος Γιαπής του Τμήματος Χημείας και Χημικών Μηχανικών του Τεχνολογικού Ινστιτούτου της Καλιφόρνιας (Caltech) έδειξε με ποιον τρόπο το μοριακό οξυγόνο (οξυγόνο σε αέρια μορφή) μπορεί να παραχθεί στην επιφάνεια των κομητών.

Η πρώτη φορά που ανακαλύφθηκε μοριακό οξυγόνο σε κομήτη, ήταν το 2015 από τους ερευνητές που μελέτησαν τα στοιχεία, τα οποία συνέλλεξε η διαστημοσυσκευή «Ροζέτα» του Ευρωπαϊκού Οργανισμού Διαστήματος (ESA) κατά την παρατεταμένη μελέτη του κομήτη 67Ρ/Τσουριούμοφ-Γκερασιμένκο.

Η «Ροζέτα» ανίχνευσε απρόσμενα μεγάλες ποσότητες αερίου οξυγόνου στην ατμόσφαιρα του κομήτη. Το μοριακό (αέριο) οξυγόνο είναι πολύ ασταθές, επειδή συνήθως ενώνεται με το υδρογόνο για να σχηματίσει νερό ή με τον άνθρακα για να δημιουργήσει διοξείδιο του άνθρακα. Πριν τον κομήτη 67/Ρ, αέριο οξυγόνο στο διάστημα είχε ανιχνευθεί μόνο δύο φορές σε νεφελώματα που παράγουν άστρα.

Η βασική υπόθεση των επιστημόνων ήταν έως τώρα ότι το μοριακό οξυγόνο στον κομήτη είναι αρχέγονο, δηλαδή βρίσκεται στο εσωτερικό του από το ξεκίνημα του ηλιακού μας συστήματος πριν από 4,6 δισεκατομμύρια χρόνια και απλώς κάποια στιγμή, όταν η επιφάνεια του κομήτη σιγά-σιγά ξεπαγώνει, αυτό διαφεύγει στην ατμόσφαιρα.

Όμως ο Γιαπής, που έκανε τη σχετική δημοσίευση στο περιοδικό «Nature Communications» [Dynamic molecular oxygen production in cometary comae], δείχνει ότι μπορεί να συμβαίνει κάτι άλλο και το οξυγόνο να είναι «φρέσκο». Καθώς ο κομήτης θερμαίνεται από τον Ήλιο, αποβάλλει μόρια υδρατμών, τα οποία ιονίζονται από την υπεριώδη ηλιακή ακτινοβολία. Στη συνέχεια ο ηλιακός «άνεμος» ωθεί τα ιονισμένα μόρια των υδρατμών πίσω, με αποτέλεσμα αυτά να προσκρούουν πάνω την επιφάνεια του κομήτη, η οποία περιέχει χημικά δεσμευμένο (όχι αέριο) οξυγόνο. Κατά την πρόσκρουση, τα μόρια των υδρατμών προσλαμβάνουν άλλο ένα άτομο οξυγόνου και έτσι τελικά σχηματίζεται το μοριακό (αέριο) οξυγόνο.

Η σημασία αυτής της εξήγησης είναι ότι το μοριακό οξυγόνο που η «Ροζέτα» έχει βρει πάνω στον κομήτη, μπορεί κάλλιστα να παράγεται σε πραγματικό χρόνο επί τόπου και να μην είναι πανάρχαιο, όπως είχαν υποθέσει άλλοι επιστήμονες.

Όπως δήλωσε ο κ. Γιαπής, «η εχθρική κόμη του κομήτη είναι ένα δυναμικό περιβάλλον χημικών αντιδράσεων, ικανό να συνθέσει μόρια που τυπικά σχετίζονται με την παρουσία της ζωής και να το κάνει με πλήρως αβιοτικούς τρόπους. Η ανακάλυψη αυτή έχει συνέπειες για την αναζήτηση εξωγήινης ζωής, ιδιαίτερα πρέπει να αναθεωρηθούν οι σχετικοί βιοδείκτες που οι επιστήμονες αναζητούν στα ουράνια σώματα».

Η έμπνευση από τη «Ροζέτα»

Εικόνα τμήματος του κομήτη 67P που λήφθηκε από τη Rosetta στις 6 Αυγούστου, από απόσταση 120 km. H ανάλυση της εικόνας είναι 2.2 μέτρα ανά pixel. Image of comet 67P/Churyumov-Gerasimenko taken by the Rosetta spacecraft. This image has been enhanced to bring out the details of the comet's activity. Credit: ESA/Rosetta/NAVCAM, CC BY-SA IGO 3.0

«Η νέα έρευνα» τόνισε ο κ. Γιαπής «ανοίγει νέους δρόμους για την εκμετάλλευση της διαστημικής χημείας, προκειμένου να υπάρξει επιτόπια αξιοποίηση πόρων στη διάρκεια των μελλοντικών διαπλανητικών ταξιδιών. Και πρέπει να σημειώσω ότι οι εξωτικές αντιδράσεις που ‘καθοδηγούν’ μια τέτοια χημεία, δεν θα είχαν ανακαλυφθεί χωρίς την έμπνευση από την αποστολή της Ροζέτα».

Όπως δήλωσε, οι ίδιες χημικές αντιδράσεις που εδώ και 20 χρόνια μελετά στη Γη, μπορεί να λαμβάνουν χώρα και σε έναν κομήτη. Όπως είπε, «άρχισα να ενδιαφέρομαι για το διάστημα, ψάχνοντας για μέρη όπου τα ιόντα μπορούν να επιταχύνονται και να συγκρούονται με επιφάνειες. Μελετώντας τις μετρήσεις για τον κομήτη της Ροζέτα και ιδίως αυτές που αφορούσαν τις ενέργειες των μορίων των υδρατμών που πέφτουν πάνω στην επιφάνειά του, ξαφνικά μου έκανε ‘κλικ’. Συνειδητοποίησα πως αυτό που μελετούσα επί χρόνια, συμβαίνει ακριβώς πάνω στον κομήτη».

Σύμφωνα με τον Έλληνα επιστήμονα, και άλλα ουράνια σώματα, όπως οι εξωπλανήτες, μπορεί να παράγουν αέριο οξυγόνο με τον ίδιο χημικό αβιοτικό μηχανισμό, χωρίς να απαιτείται η μεσολάβηση κάποιου οργανισμού (π.χ. της φωτοσύνθεσης των φυτών) για να εκλυθεί το οξυγόνο στην ατμόσφαιρα. Αυτό έχει μεγάλη σημασία, επειδή οι αστροβιολόγοι θεωρούν ότι αν βρουν το «αποτύπωμα» του οξυγόνου στην ατμόσφαιρα ενός εξωπλανήτη, αυτό θα προδίδει την ύπαρξη ζωής. Κάτι τέτοιο όμως, κατά τον Γιαπή, μπορεί να μη συμβαίνει, αφού το αέριο οξυγόνο είναι δυνατό να παραχθεί και με καθαρά χημικές αντιδράσεις.

Η πρώτη επιβεβαιωμένη ανίχνευση μοριακού οξυγόνου στο διάστημα έγινε το 2011 από την αποστολή «Herschel» της ESA. Όπως δήλωσε ο συνεργάτης της NASA αστρονόμος Πολ Γκόλντσμιθ επίσης του Caltech, «το οξυγόνο είναι σημαντικό μόριο που είναι πολύ δύσκολο να ανιχνευθεί στο διάστημα. Ο μηχανισμός παραγωγής του, που μελέτησε το εργαστήριο του καθηγητή Γιαπή, μπορεί να έχει ισχύ σε πολλά διαφορετικά περιβάλλοντα και δείχνει τη σημαντική σύνδεση ανάμεσα στις εργαστηριακές έρευνες και στην αστροχημεία».

Konstantinos Giapis. Credit: Caltech

Ο Κωνσταντίνος Γιαπής αποφοίτησε το 1984 από τη Σχολή Χημικών Μηχανικών του ΕΜΠ στην Αθήνα, πήρε το διδακτορικό του το 1989 από το Τμήμα Χημικών Μηχανικών του Πανεπιστημίου της Μινεσότα και έως το 1992 διεξήγαγε μεταδιδακτορική έρευνα στα Εργαστήρια ΑΤ&Τ Bell στο Νιού Τζέρσι.

An experiment in the lab of Caltech's Konstantinos Giapis. A professor of chemical engineering, Giapis performs tests with high-speed ions to study reaction dynamics at surfaces, the results of which can be used to improve methods for fabricating semiconductor devices. Water ions are generated in a plasma reactor, seen at left, which glows to produce white-blue light. Credit: Caltech

Σήμερα είναι καθηγητής στο Caltech και η έρευνά του εστιάζεται στη δυναμική αλληλεπίδραση των ιόντων με τις επιφάνειες των ημιαγωγών (υλικών για επεξεργαστές υπολογιστών και κινητών τηλεφώνων), στα νανοϋλικά και στη νανοτεχνολογία.

Πηγές: amna.gr – caltech.edu

Τα αντιπρωτόνια αποκαλύπτουν την σκοτεινή ύλη. Antiprotons May Hold Dark Matter Signal

Τα τελευταία δεδομένα σχετικά με τον αριθμό των αντιπρωτονίων που περιέχονται στις κοσμικές ακτίνες μπορεί να κρύβουν αποδείξεις για την ύπαρξη των σωματιδίων της σκοτεινής ύλης. To Άλφα Μαγνητικό Φασματόμετρο ή AMS (Alpha Magnetic Sectrometer) στον Διεθνή Διαστημικό Σταθμό. Recently released data on cosmic-ray antiprotons may contain hints of dark matter, as revealed by two new analyses. Exterior view of the ISS with the AMS-02 visible in the foreground. Credit: NASA

Μια πολλά υποσχόμενη μέθοδος ανίχνευσης της σκοτεινής ύλης είναι η αναζήτηση «πλεονάσματος» αντιπρωτονίων(*) στις κοσμικές ακτίνες που κατά πάσα πιθανότητα προέρχεται από τα προϊόντα αντιδράσεων των σωματιδίων σκοτεινής ύλης. Δυο ερευνητικές ομάδες ανέλυσαν, ανεξάρτητα η μία από την άλλη, τα δεδομένα ανίχνευσης αντιπρωτονίων στις κοσμικές ακτίνες από το πείραμα Alpha Magnetic Spectrometer (AMS). Και οι δυο ομάδες βρήκαν ενδείξεις περίσσειας αντιπρωτονίων πίσω από την οποία μπορεί να βρίσκονται σωματίδια σκοτεινής ύλης με μάζα μερικών δεκάδων GeV/c2.

Oι κοσμικές ακτίνες περιέχουν έναν μικρό αριθμό σωματιδίων αντιύλης, όπως ποζιτρόνια (αντιηλεκτρόνια) και αντιπρωτόνια. Τα περισσότερα από αυτά τα αντι-σωματίδια σχηματίζονται σε «αστροφυσικές» συγκρούσεις μεταξύ υψηλής ενέργειας κοσμικών ακτίνων και μεσοαστρικού αερίου. Όμως, ένα μικρό ποσοστό από αυτά μπορεί να προέρχεται από διασπάσεις σωματιδίων σκοτεινής ύλης.

Οι ερευνητές Alessandro Cuoco et al από το Πανεπιστήμιο του Aachen στη Γερμανία [Novel Dark Matter Constraints from Antiprotons in Light of AMS-02], υπέθεσαν δυο σενάριαένα με σκοτεινή ύλη και ένα χωρίς. Στη συνέχεια έκαναν προσομοιώσεις και για τις δυο περιπτώσεις προσαρμόζοντας τις παραμέτρους έτσι ώστε να πάρουν το φάσμα των αντιπρωτονίων, πρωτονίων και πυρήνων ηλίου που περιέχονται στα δεδομένα του Άλφα Μαγνητικού Φασματομέτρου αλλά και σε άλλα πειράματα. Διαπίστωσαν ότι στο σενάριο της σκοτεινής ύλης, η ύπαρξη ενός σωματιδίου με μάζα 80 GeV/c2, παρείχε την καλύτερη προσαρμογή στα παρατηρούμενα αντιπρωτόνια σε σχέση με το σενάριο χωρίς σκοτεινή ύλη.

Εν τω μεταξύ, ο Ming-Yang Cui και οι συνεργάτες του από την Κινεζική Ακαδημία Επιστημών [Possible Dark Matter Annihilation Signal in the AMS-02 Antiproton Data], πραγματοποίησαν μια ανεξάρτητη ανάλυση βασισμένη σε ένα ελαφρώς διαφορετικό σύνολο υποθέσεων. Η στρατηγική τους βασίστηκε σε παρατηρήσεις του λόγου βορίου προς άνθρακα που περιέχονται στην κοσμική ακτινοβολία, ο οποίος δίνει μια ένδειξη του πόσο μακριά έχουν ταξιδέψει οι κοσμικές ακτίνες μέχρι να φτάσουν σε μας. Διαπίστωσαν ότι ένα μοντέλο με σωματίδια σκοτεινής ύλης μάζας 40 έως 60 GeV/c2, έδινε καλύτερη προσαρμογή στα δεδομένα των αντιπρωτονίων.

Τα αποτελέσματα αυτά, μαζί με προαναφερθέντα των Cuoco et al, βρίσκονται σε πολύ καλή συμφωνία με τα συμπεράσματα μιας άλλης έρευνας σχετικής με το παρατηρούμενο πλεόνασμα ακτίνων γάμα που εκπέμπεται από το κέντρο του γαλαξία μας, η ερμηνεία του οποίου απαιτεί επίσης την ύπαρξη σωματιδίων σκοτεινής ύλης.

When protons and antiprotons collide, W bosons are produced asymmetrically, since the up quark carries more momentum than the down. By looking at the directions of positively (blue) and negatively (red) charged muons from W decay, we gain deeper understanding about the quark interactions.

(*) Το αντιπρωτόνιο είναι δομικό σωματίδιο της αντιύλης (αντισωματίδιο) το οποίο έχει την ίδια μάζα με το πρωτόνιο αλλά αντίθετο (-1) φορτίο. Τα αντιπρωτόνια είναι σταθερά σωματίδια, αλλά στο περιβάλλον της ύλης συνήθως έχουν μικρή διάρκεια ζωής γιατί σε επαφή με πρωτόνια εξαϋλώνονται (ένα αντιπρωτόνιο με ένα πρωτόνιο) και η μάζα τους μετατρέπεται σε ενέργεια.