Arts Universe and Philology

Arts Universe and Philology
The blog "Art, Universe, and Philology" is an online platform dedicated to the promotion and exploration of art, science, and philology. Its owner, Konstantinos Vakouftsis, shares his thoughts, analyses, and passion for culture, the universe, and literature with his readers.

Τετάρτη 10 Απριλίου 2013

Τα ηφαίστεια της Ιούς βρίσκονται σε λάθος θέση, Scientists to Io: Your Volcanoes Are in the Wrong Place


This is a montage of New Horizons images of Jupiter and its volcanic moon Io, taken during the spacecraft's Jupiter flyby in early 2007. The image shows a major eruption in progress on Io's night side, at the northern volcano Tvashtar. Incandescent lava glows red beneath a 330-kilometer (205-mile-high) volcanic plume, whose uppermost portions are illuminated by sunlight. The plume appears blue due to scattering of light by small particles in the plume. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Goddard Space Flight Center

Τα εκατοντάδες ηφαίστεια στο φεγγάρι του Δία Ιώ, δεν βρίσκονται εκεί που υποτίθεται ότι θα έπρεπε να είναι, λένε οι επιστήμονες.


Μια ακολουθία πέντε διαδοχικών εικόνων των γιγαντιαίων νεφών του ηφαιστείου Tvashtar στον δορυφόρο του Δία, Ιώ. Οι φωτογραφίες λήφθηκαν από την αποστολή New Horizons της NASA. This five-frame sequence of images from NASA's New Horizons mission captures the giant plume from Io's Tvashtar volcano. Snapped by the probe's Long Range Reconnaissance Imager (LORRI) as the spacecraft flew past Jupiter in 2007, this first-ever movie of an Io plume clearly shows motion in the cloud of volcanic debris, which extends 330 km (205 miles) above the moon's surface. Only the upper part of the plume is visible from this vantage point. The plume's source is 130 km (80 miles) below the edge of Io's disk, on the far side of the moon. Io's hyperactive nature is emphasized by the fact that two other volcanic plumes are also visible off the edge of Io's disk: Masubi at the 7 o'clock position, and a very faint plume, possibly from the volcano Zal, at the 10 o'clock position. Jupiter illuminates the night side of Io, and the most prominent feature visible on the disk is the dark horseshoe shape of the volcano Loki, likely an enormous lava lake. Boosaule Mons, which at 18 km (11 miles) is the highest mountain on Io and one of the highest mountains in the solar system, pokes above the edge of the disk on the right side. The five images were obtained over an 8-minute span, with two minutes between frames, from 23:50 to 23:58 Universal Time on 1 March 2007. Io was 3.8 million km (2.4 million miles) from New Horizons. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Η σημαντική ηφαιστειακή δραστηριότητα της Ιούς συγκεντρώνεται 30 έως 60 μοίρες ανατολικότερα από εκεί που υπολόγιζαν οι επιστήμονες της ΝΑSA λαμβάνοντας υπόψη τα μοντέλα προσομοίωσης της εσωτερικής θερμότητας του πλανήτη. «Το εξωτικό, ηφαιστειακό φεγγάρι του Δία Ιώ είναι ακόμα πιο μυστηριώδες από ό,τι οι ερευνητές θεωρούσαν μέχρι σήμερα» λέει η ΝΑSA αφού ολοκλήρωσε την επεξεργασία στοιχείων που συνέλεξε το διαστημικό όχημα της «Νέοι Ορίζοντες».


This is a map of the predicted heat flow at the surface of Io from different tidal heating models. Red areas are where more heat is expected at the surface while blue areas are where less heat is expected. Figure A shows the expected distribution of heat on Io's surface if tidal heating occurred primarily within the deep mantle, and figure B is the surface heat flow pattern expected if heating occurs primarily within the asthenosphere. In the deep mantle scenario, surface heat flow concentrates primarily at the poles, whereas in the asthenospheric heating scenario, surface heat flow concentrates near the equator. Credit: NASA/Christopher Hamilton

«Κάτι λείπει από την κατανόησή μας για την Ιώ» δήλωσε ο επικεφαλής της μελέτης Κρίστοφερ Χάμιλτον, καθηγητής από το Πανεπιστήμιο του Μέριλαντ.

Η Ιώ είναι ο πιο ηφαιστειογενής πλανήτης στο ηλιακό μας σύστημα. Διαθέτει δραστηριότητα 25 φορές πολλαπλάσια αυτής της Γης.


Μια σύνθεση εικόνων της Ιούς και της Ευρώπης (επίσης δορυφόρου του Δία) που λήφθηκαν στις 2 Μαρτίου του 2007 από το διαστημικό σκάφος New Horizons. This is a composite image of Io and Europa taken March 2, 2007 with the New Horizons spacecraft. Here Io (top) steals the show with its beautiful display of volcanic activity. Three volcanic plumes are visible. Most conspicuous is the enormous 300-kilometer (190-mile) high plume from the Tvashtar volcano at the 11 o'clock position on Io's disk. Two much smaller plumes are also visible: that from the volcano Prometheus, at the 9 o'clock position on the edge of Io's disk, and from the volcano Amirani, seen between Prometheus and Tvashtar along Io's terminator (the line dividing day and night). The Tvashtar plume appears blue because of the scattering of light by tiny dust particles ejected by the volcanoes, similar to the blue appearance of smoke. In addition, the contrasting red glow of hot lava can be seen at the source of the Tvashtar plume. This image was taken from a range of 4.6 million kilometers (2.8 million miles) from Io and 3.8 million kilometers (2.4 million miles) from Europa. Although the moons appear close together in this view, a gulf of 790,000 kilometers (490,000 miles) separates them. Io's night side is lit up by light reflected from Jupiter, which is off the frame to the right. Europa's night side is dark, in contrast to Io, because this side of Europa faces away from Jupiter. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Αυτή η έντονη δραστηριότητα παράγεται από τις βαρυτικές έλξεις του Δία, με την υποβοήθηση από το κοντινά φεγγάρια Ευρώπη και Γανυμήδη.

Η Ιώ ολοκληρώνει δύο τροχιές για κάθε μία της Ευρώπης, και κάθε τέσσερις του Γανυμήδη.






Τρίτη 9 Απριλίου 2013

Το Μαντείο των Δελφών. Oracle of Delphi

Ψηλά, πάνω από τον Κορινθιακό κόλπο, στο ιερό βουνό του Παρνασσού, περικυκλωμένο από έλατα, βρίσκονταν το ιερό του θεού Απόλλωνα, Δελφοί.

The Treasury of Athens, built to commemorate their victory at the Battle of Marathon.

Για πολλούς αιώνες η φωνή των Δελφών, του πιο σπουδαίου ιερού, ήταν η απόλυτη οδηγήτρια δύναμη στους Έλληνες.

Theatre and Temple of Apollo in mountainous country at Delphi. The theater is quite well-preserved, dating to the 4th century B.C. Eumenes II of Pergamon restored it in the 2nd century, as did the Romans later. It was used for musical and theatrical portions of the Pythian Games and for meetings of Delphian citizens. Thirty-five rows provided seats for 5000 spectators as well as an excellent view overlooking the Temple of Apollo.

Απλοί άνθρωποι καθώς και απεσταλμένοι πόλεων το επισκέπτονταν, για να λάβουν απάντηση και οδηγίες για το μέλλον και πεπρωμένο τους.

Michelangelo, Sibyl

Οι χρησμοί υπακούονταν και η πειστική δύναμη τους ήταν τέτοια, που πόλεμοι κερδήθηκαν ή χάθηκαν, από λίγες λέξεις της Πυθίας. Σύμφωνα με τους αρχαίους Έλληνες, για 1200 χρόνια, το Μαντείο των Δελφών μιλούσε εκ μέρους των θεών.

The Oracle of Delphi and the Strange Fumes.

Σύγχρονες μελέτες όμως απορρίπτουν τους ισχυρισμούς των αρχαίων ότι η μαντική δύναμη πήγαζε από ατμούς που αναδύονταν απ' τα ρήγματα του βράχου στους Δελφούς. Τέσσερις επιστήμονες ενώνουν τις δυνάμεις τους για να αποδείξουν ότι οι αρχαίοι είχαν δίκιο.

Myth and science meet at Delphi, where the ancient Greeks said the oracle (always a woman), in a trance and often a frenzy, spoke on behalf of the gods. Scholarship rejected the claim that vapors rising from the temple's floor inspired the oracle.

The Tholos at the Sanctuary of Athena Pronaia.

But now, a wealth of evidence compiled by a geologist, archaeologist, chemist, and toxicologist suggests the ancients were right, and the discovery of two faults intersecting below the temple indicate the geology could have released intoxicating fumes.






Το ουράνιο τόξο του σουπερνόβα, Starburst! Incredible rainbow image that shows what REALLY happens when a giant star dies


Μια από τις εικόνες που έδωσαν στη δημοσιότητα οι ερευνητές. Πρόκειται για μια σύνθεση των ραδιοεκμπομπών του σουπερνόβα 1987Α και μιας φωτογραφίας του που έχει τραβήξει το διαστημικό τηλεσκόπιο Hubble. The death of a star: Contours of different wavelengths of radio emissions and a Hubble space telescope image of Supernova 1987A combined to provide a unique view of its death throes. Credit: ICRAR/Hubble

Διεθνής ομάδα επιστημόνων έδωσε στη δημοσιότητα μια ασυνήθιστη και ταυτόχρονα εντυπωσιακή εικόνα ενός υπερκαινοφανούς αστέρα. Η εικόνα αποκαλύπτει με λεπτομέρεια κοσμικές διεργασίες στο σουπερνόβα 1987Α που εντόπισε το διαστημικό τηλεσκόπιο Hubble το 1987 και έκτοτε αποτελεί μόνιμο στόχο των αστρονόμων. Οι νέες παρατηρήσεις αναμένεται να επιτρέψουν στους επιστήμονες να μελετήσουν τον πυρήνα του γιγάντιου νεκρού πλέον άστρου και να αποκαλύψουν στοιχεία για το παρελθόν του.

Το κοσμικό ουράνιο τόξο

“Ραδιο – εικόνα” του υπολείμματος του SN 1987A από το τηλεσκόπιο ATCA της Αυστραλίας. A Radio image of the remnant of SN 1987A produced from observations performed with the Australia Telescope Compact Array (ATCA).

Ερευνητές του Διεθνούς Κέντρου Έρευνας Ραδιοαστρονομίας (ICRAR) χρησιμοποίησαν το ραδιοτηλεσκόπιο ATCA στην Αυστραλία και κατάφεραν να καταγράψουν με λεπτομέρεια τις πιο μεγαλύτερης ευκρίνεια και υψηλότερης ανάλυσης εικόνες των υπολειμμάτων του υπερκαινοφανούς αστέρα που διαστέλλονται στο Διάστημα.


Τα απομεινάρια του σουπερνόβα 1987A όπως τα φωτογράφισε το διαστημικό τηλεσκόπιο Hubble το 2011. Image of the remnants of 1987A as seen at optical wavelengths with the Hubble Space Telescope in 2011.

Σε αντίθεση με τα οπτικά τηλεσκόπια τα ραδιοτηλεσκόπια έχουν τη δυνατότητα να λειτουργούν κατά τη διάρκεια της ημέρας ενώ το «βλέμμα» τους μπορεί να διαπερνά διάφορα εμπόδια όπως σκόνη και αέρια πίσω ή μέσα στα οποία κρύβονται κοσμικές δομές ή σώματα. Οι ερευνητές κατάφεραν να αποτυπώσουν εικόνες από τις ισχυρές ραδιοεκπομπές που παράγονται από τα υπολείμματα του 1987Α. Οι ειδικοί περιγράφουν τις εικόνες αυτές ως ένα κοσμικό ουράνιο τόξο.


A Red/Green/Blue overlay of optical, X-Ray and radio observations made by 3 different telescopes. In red are the 7-mm (44GHz) observations made with the Australian Compact Array in New South Wales, in green are the optical observations made by the Hubble Space Telescope, and in blue is an X-ray view of the remnant, observed by Nasa's space based Chandra X-ray Observatory.

«Τα υπολείμματα των σουπερνόβα αστέρων λειτουργούν σαν φυσικοί επιταχυντές σωματιδίων, οι ραδιοεκπομπές που παρατηρήσαμε προέρχονται από ηλεκτρόνια που στροβιλίζονται σε μαγνητικές ζώνες εκπέμποντας φωτόνια σε κάθε περιστροφή που κάνουν. Όσο μεγαλύτερη είναι η ανάλυση των εικόνων τόσο περισσότερα μπορούμε να μάθουμε για τη δομή του υπερκαινοφανούς αστέρα. Μέχρι στιγμής όχι μόνο καταφέραμε να αναλύσουμε τη μορφολογία του 1987Α αλλά και να βρούμε δεδομένα που θα μας βοηθήσουν να δούμε τι συνέβη στο παρελθόν του» αναφέρει ο Λίστερ Στάβλει Σμιθ αναπληρωτής διευθυντής του ICRAR. Η μελέτη δημοσιεύεται στην επιθεώρηση «Astrophysical Journal».







Οξυζενέ στον δορυφόρο του Δία Ευρώπη, Mapping the Chemistry Needed for Life at Europa


Η παγωμένη επιφάνεια της Ευρώπης, αυτού του αινιγματικού δορυφόρου του Δία, περιέχει σχετικά μεγάλες ποσότητες υπεροξειδίου του υδρογόνου, το οποίο θα μπορούσε να αποτελεί πηγή ενέργειας για τα μικρόβια που ενδεχομένως κρύβονται στον υπόγειο ωκεανό του φεγγαριού, ανακοίνωσαν ερευνητές της NASA.

«Η ζωή όπως τη γνωρίζουμε χρειάζεται υγρό νερό, χημικά στοιχεία όπως ο άνθρακας, το άζωτο, ο φώσφορος και το θείο, καθώς και κάποια πηγή χημικής ενέργειας ή φωτός» δήλωσε ο Κέβιν Χαντ του Εργαστηρίου Αεριώθησης (JPL) της NASA στην Καλιφόρνια.

«Η Ευρώπη διαθέτει υγρό νερό και χημικά στοιχεία, και πιστεύουμε ότι το υπεροξείδιο του υδρογόνου ενδέχεται να καλύπτει ένα σημαντικό μέρος των απαιτήσεων σε ενέργεια».

«Η παρουσία οξειδωτικών παραγόντων όπως το υπεροξείδιο του υδρογόνου έπαιξε κρίσιμο ρόλο στην εμφάνιση σύνθετων, πολυκύτταρων μορφών ζωής στη Γη» επισήμανε.


Jupiter's moon Europa has a crust made up of blocks, evidence that Europa may have once had a subsurface ocean.

Η Ευρώπη, ένα από τα τέσσερα μεγάλα φεγγάρια του Δία, συγκεντρώνει εδώ και χρόνια το ενδιαφέρον των αστροβιολόγων, καθώς υπάρχουν ισχυρές ενδείξεις ότι κάτω από τον πάγο που καλύπτει την επιφάνεια υπάρχει ένας παγκόσμιος ωκεανός, μέσα στον οποίο θα μπορούσε ενδεχομένως να έχει εμφανιστεί μικροβιακή ζωή (το ίδιο ισχύει εξάλλου για τον δορυφόρο του Κρόνου Εγκέλαδο)

Το υπεροξείδιο του υδρογόνου (Η2Ο2) είναι μια υγρή, άοσμη ένωση με ισχυρές οξειδωτικές ιδιότητες. Το υδατικό του διάλειμμα, γνωστό ως οξυζενέ, χρησιμοποιείται ως απολυμαντικό.

Για τους περισσότερους ζωντανούς οργανισμούς, το υπεροξείδιο του υδρογόνου σχηματίζεται ως παραπροϊόν των μεταβολικών αντιδράσεων και πρέπει να εξουδετερώνεται από τα κύτταρα καθώς έχει ισχυρή τοξική δράση. Ορισμένα βακτήρια, πάντως, χρησιμοποιούν το υπεροξείδιο ως πηγή ενέργειας.


Αριστερά η Ευρώπη σε εικόνα πραγματικού χρώματος από την αποστολή Galileo. Η εικόνα δεξιά έχει υποστεί επεξεργασία για να αναδειχθούν τα επιφανειακά χαρακτηριστικά. Οι γραμμές αντιστοιχούν σε ρωγμές στον πάγο. This color composite view combines violet, green, and infrared images of Jupiter's intriguing moon, Europa, for a view of the moon in natural color (left) and in enhanced color designed to bring out subtle color differences in the surface (right). The bright white and bluish part of Europa's surface is composed mostly of water ice, with very few non-ice materials. In contrast, the brownish mottled regions on the right side of the image may be covered by hydrated salts and an unknown red component. The yellowish mottled terrain on the left side of the image is caused by some other unknown component. Long, dark lines are fractures in the crust, some of which are more than 3,000 kilometers (1,850 miles) long. (Credit: NASA/JPL/University of Arizona)

Οι πρώτες ενδείξεις για την ύπαρξη υπεροξειδίου του υδρογόνου στην Ευρώπη ήρθαν το 1997 από την αποστολή Galileo, η οποία όμως μελέτησε ένα μικρό τμήμα του υδρογόνου.

Τώρα, οι ερευνητές K. P. Hand and M. E. Brown παρουσιάζουν στo The Astrophysical Journal Letters μια ανάλυση που καλύπτει μια πολύ μεγαλύτερη επιφάνεια.

Οι ερευνητές χρησιμοποίησαν το τηλεσκόπιο Keck ΙΙ στη Χαβάη για να ανιχνεύσουν τη φασματική υπογραφή του Η2Ο2 στο υπέρυθρο τμήμα του φάσματος. Η ουσία ανιχνεύθηκε στην πλευρά του Ευρώπης που κοιτά προς την κατεύθυνση της κίνησης του φεγγαριού, σε συγκέντρωση 20 φορές μικρότερη από ό,τι στο οξυζενέ για οικιακή χρήση.

Αυτό όμως που παραμένει άγνωστο είναι το κατά πόσο το υπεροξείδιο υπάρχει και μέσα στον ωκεανό της Ευρώπης, εκτός από την επιφάνεια που είναι σχεδόν σίγουρα νεκρή.

«Στην Ευρώπη, το υπεροξείδιο θα μπορούσε να ικανοποιεί τις ενεργειακές απαιτήσεις που απαιτούνται για τη ζωή, εφόσον βέβαια αναμειγνύεται με το νερό του ωκεανού» επισήμανε ο Δρ Hand.

Όσον αφορά το μηχανισμό σχηματισμού του υπεροξείδιου, οι ερευνητές εκτιμούν ότι η ένωση δημιουργείται από το βομβαρδισμό του επιφανειακού πάγου από ισχυρή ακτινοβολία.




Σάββατο 6 Απριλίου 2013

Το καρδιογράφημα του Ήλιου, Sun's Magnetic 'Heartbeat' Revealed


Μια από τις εικόνες της προσομοίωσης που δείχνει τις μαγνητικές διεργασίες στο εσωτερικό του Ήλιου. A simulation of magnetic fields at the time of solar maximum. CREDIT: University of Montreal Solar Physics Research Group

Ερευνητές στον Καναδά πραγματοποίησαν μια προσομοίωση η οποία έδειξε τις μαγνητικές διεργασίες που λαμβάνουν χώρα στο εσωτερικό του Ήλιου. Η μελέτη κρίνεται ως ιδιαίτερα σημαντική αφού οι συγκεκριμένες διεργασίες είναι αυτές που παράγουν τις ηλιακές εκλάμψεις καθώς και τις ηλιακές κηλίδες.

Οι χτύποι της καρδιάς του Ήλιου

Ερευνητές του Πανεπιστημίου του Μόντρεαλ ένωσαν την ισχύ υπερυπολογιστών που διαθέτει το πανεπιστήμιο με ένα δίκτυο υπολογιστών στον Καναδά (το δίκτυο Calcul Quebec) δημιουργώντας έτσι στην ουσία έναν «υπερ-υπερυπολογιστή».

Στόχος των επιστημόνων ήταν να αποκρυπτογραφήσουν τη δραστηριότητα των μαγνητικών πεδίων στο εσωτερικό του μητρικού μας άστρου.– τους «ηλιακούς καρδιακούς παλμούς» όπως τους χαρακτηρίζουν. Αυτοί οι καρδιακοί παλμοί  παράγουν την ενέργεια που τροφοδοτεί τις ηλιακές εκλάμψεις και τις ηλιακές κηλίδες. Η προσομοίωση έδειξε ότι η πολικότητα των μαγνητικών πεδίων στο εσωτερικό του Ήλιου  αλλάζει (αντιστρέφεται) κάθε 40 έτη.

Tα εμπόδια

Οι εσωτερικές διεργασίες που συντελούνται στον Ήλιο αποτελούν διαχρονικό πεδίο έρευνας αλλά τα υπάρχοντα τεχνικά μέσα ακόμη και σήμερα δεν μπορούν να αποκαλύψουν με ακρίβεια τι συμβαίνει στο εσωτερικό του. Μάλιστα φαινόμενα όπως οι μεταβολές στη μορφή και τη ροή ενέργειας εξελίσσονται σε πολύ μικρό χώρο, μερικές δεκάδες ή εκατοντάδες μέτρα, γεγονός που δυσκολεύει ακόμη περισσότερο την ερευνητική προσπάθεια με δεδομένο το μέγεθος του Ήλιου που είναι περίπου ένα εκατομμύριο φορές μεγαλύτερος από της Γης.

«Είναι πρακτικά αδύνατο να αναπαραχθούν αυτές οι διεργασίες σε μια προσομοίωση» δήλωσε στην ιστοσελίδα διαστημικών θεμάτων Space.com ο Πολ Σαρμπονό, επικεφαλής της ερευνητικής ομάδας. Οι ερευνητές ανέπτυξαν μια μέθοδο για να ξεπεράσουν τα προβλήματα και να πάρουν κάποια αποτελέσματα.

Αρχικά περιόρισαν στο μικρότερο εφικτό το εύρος της ανάλυσης που θα προσομοίωνε κατά προσέγγιση τις μαγνητικές διεργασίες στο εσωτερικό του Ήλιου στα δέκα χλμ.. Ακόμη και έτσι όμως η ενέργεια που θα παραγόταν στην προσομοίωση ήταν τόσο μεγάλη που δεν θα της επέτρεπε να «τρέχει» για αρκετά μεγάλο χρονικό διάστημα ώστε να συλλεχθούν αξιοποιήσιμα δεδομένα. Η προσομοίωση θα κατέρρεε, θα «ανατιναζόταν» από την υπερβολική ενέργεια όπως χαρακτηριστικά λέει ο Σαρμπονό.

Η προσομοίωση


Temperature variability on a model intended to approximate what goes on inside the sun. CREDIT: University of Montreal Solar Physics Research Group

Έτσι οι ερευνητές σχεδίασαν μια προσομοίωση στην οποία η ενέργεια θα άρχιζε να μεταλλάσσεται από την αρχική στην τελική της μορφή λίγο πριν η προσομοίωση «ανατιναχθεί». Με αυτόν τον τρόπο κατάφεραν να συλλέξουν ορισμένα στοιχεία.

«Δεν είναι καθόλου εύκολο να κάνεις τέτοιες παρεμβάσεις σε συστήματα όπως το μαγνητικό πεδίο του Ήλιου. Αν αρχίσεις να αποσπάς ενέργεια πολύ γρήγορα θα επηρεάσεις τη συνολική δυναμική του συστήματος. Παραδέχομαι ότι η προσομοίωση που αναπτύξαμε δεν είναι τέλεια αφού με τα υπάρχοντα τεχνικά μέσα δεν είναι εφικτή η μελέτη τέτοιων φαινομένων. Παρόλα αυτά αναδείχθηκαν δεδομένα που φωτίζουν ορισμένες διεργασίες του Ήλιου» καταλήγει ο Σαρμπονό. Η έρευνα δημοσιεύεται στην επιθεώρηση «Science».

See how solar flares, sun storms and huge eruptions from the sun work in this SPACE.com infographic.

Επιστήμονες «βλέπουν» τα όνειρά μας μέσω υπολογιστή. Scientists 'read dreams' using brain scans

Image: Chris Nurse, Wellcome Images

Ιάπωνες νευροεπιστήμονες ανακοίνωσαν ότι κατάφεραν να «δουν» σε ένα βαθμό τα όνειρα ανθρώπων με τη βοήθεια υπολογιστών, κάνοντας ένα ακόμα βήμα για αυτό που μερικοί θεωρούν μεγάλο επίτευγμα και άλλοι μεγάλο εφιάλτη: κάποια στιγμή τα μηχανήματα θα μπορούν να «διαβάζουν» τα όνειρα του καθενός.

Οι ερευνητές, με επικεφαλής τον καθηγητή Γιουκιγιάσου Καμιτάνι των Εργαστηρίων Υπολογιστικής Νευροεπιστήμης ATR στο Κιότο, που έκαναν τη σχετική δημοσίευση στο περιοδικό Science, σύμφωνα με το BBC, χρησιμοποίησαν την απεικονιστική τεχνική της λειτουργικής μαγνητικής τομογραφίας (fMRI), σε συνδυασμό με ειδικό λογισμικό ηλεκτρονικού υπολογιστή, και κατόρθωσαν να «διαβάσουν» με ποσοστό ακρίβειας 60% τις ονειρικές εικόνες που οι εθελοντές του πειράματος έβλεπαν, καθώς κοιμούνταν.

Ο Σίγκμουντ Φρόυντ το 1921.

Μπορεί ο «πατέρας» της ψυχανάλυσης Σίγκμουντ Φρόιντ να έδινε τεράστια σημασία στα όνειρα, όμως το γιατί ονειρεύονται οι άνθρωποι παραμένει ακόμα μυστήριο για την επιστήμη. «Δεν ξέρουμε σχεδόν τίποτε για τη λειτουργία του ονείρου» παραδέχτηκε η νευροεπιστήμονας Μασάκο Ταμάκι.

«Είχα την ισχυρή πεποίθηση όμως πως η αποκωδικοποίηση των ονείρων θα ήταν εφικτή, τουλάχιστον για ορισμένες πλευρές των ονείρων. Δεν εξεπλάγην από τα αποτελέσματα, αλλά ενθουσιάστηκα» δήλωσε ο Καμιτάνι.

Οι Ιάπωνες ερευνητές συνεργάστηκαν με τρεις εθελοντές που κοιμούνταν και ονειρεύονταν σε συνθήκες εργαστηρίου. Μόλις οι εθελοντές φαινόταν πως ονειρεύονταν (πριν το πρώτο στάδιο ύπνου REM), οι επιστήμονες τους ξυπνούσαν και τους ζητούσαν να περιγράψουν τι είχαν δει στον ύπνο τους. Αυτό επαναλήφθηκε πάνω από 200 φορές με καθέναν από τους τρεις συμμετέχοντες στο πείραμα.

Η παραμικρή ονειρική εικόνα, όσο εξωπραγματική και αν ήταν, καταγραφόταν από τους ερευνητές οι οποίοι στη συνέχεια ζήτησαν από τους εθελοντές, ενώ αυτή τη φορά ήταν ξύπνιοι, να δουν σε μια οθόνη υπολογιστή τις ίδιες εικόνες. Έτσι, οι επιστήμονες κατάφεραν να συσχετίσουν κάθε εικόνα με ένα νευρωνικό «αποτύπωμα» στον εγκέφαλο των εθελοντών. Με αυτό τον τρόπο δημιούργησαν μια μεγάλη βάση ψηφιακών-νευρωνικών δεδομένων, στην οποία παρόμοιες εικόνες ήταν ενταγμένες στην ίδια κατηγορία (π.χ. όνειρα σπιτιών, ξενοδοχείων και κάθε άλλου κτίσματος ταξινομήθηκαν ως «οικοδομές»).

Στο επόμενο στάδιο, οι εθελοντές έπεσαν ξανά για ύπνο, μόνο που τώρα πλέον οι εικόνες που δημιουργούσε ο εγκέφαλός τους στη διάρκεια του ονείρου (δηλαδή τα εναλλασσόμενα νευρωνικά μοτίβα), ήταν δυνατό να συσχετιστούν από το λογισμικό του υπολογιστή με συγκεκριμένες εικόνες που ήδη περιείχε η βάση δεδομένων. Επειδή οι ίδιες περιοχές του εγκεφάλου ενεργοποιούνται όταν κανείς βλέπει την ίδια εικόνα, είτε είναι ξύπνιος, είτε ονειρεύεται, το τελικό αποτέλεσμα ήταν ότι οι επιστήμονες μπορούσαν να «μαντέψουν» σε σημαντικό βαθμό τι περίπου ονειρεύονταν οι εθελοντές, πριν καν αυτοί ξυπνήσουν και περιγράψουν το όνειρό τους.

Brain activity correlated with the images that people saw in their dreams.


Οι Ιάπωνες ερευνητές προτίθενται να εμβαθύνουν την έρευνά τους στο πεδίο που λαμβάνει χώρα ο βαθύς ύπνος, στο μέσον της νύχτας, όπου οι άνθρωποι συνήθως βλέπουν και τα πιο ζωντανά όνειρά τους (στάδιο REM). Επιπλέον, θέλουν να προχωρήσουν κι άλλο την έρευνά τους για να διαπιστώσουν αν και κατά πόσο είναι δυνατό, μέσα από την καταγραφή, απεικόνιση και ανάλυση της εγκεφαλικής δραστηριότητας, να προβλέψουν άλλες πλευρές των ονείρων, πέρα από τις εικόνες, όπως τα συναισθήματα, τις μυρωδιές, τα χρώματα κ.α. που βιώνει κάποιος όταν ονειρεύεται.


Ο γνωσιακός νευροεπιστήμονας δρ Μαρκ Στόουκς του πανεπιστημίου της Οξφόρδης έκανε λόγο για «συναρπαστική έρευνα», η οποία μας φέρνει πιο κοντά στην εποχή που τα μηχανήματα θα διαβάζουν τα ανθρώπινα όνειρα, όμως επεσήμανε πως κάτι τέτοιο απέχει ακόμα πολλά χρόνια εωσότου γίνει πραγματικότητα. «Δεν υπάρχει πάντως κατ’ αρχήν κάποιος λόγος που να μην μπορεί να συμβεί κάτι τέτοιο. Η δυσκολία έγκειται κυρίως στη συστηματική συσχέτιση της εγκεφαλικής δραστηριότητας με τα φαινόμενα των ονείρων» είπε.

Προειδοποίησε όμως πως θα είναι σχεδόν αδύνατο στο μέλλον το ίδιο μηχανικό σύστημα αποκωδικοποίησης των ονείρων να μπορεί να «διαβάσει» τα όνειρα του καθενός: «Ποτέ δεν θα μπορούσαμε πραγματικά να φτιάξουμε ένα μηχάνημα που θα διαβάζει τα όνειρα του οποιουδήποτε. Τα όνειρα έχουν ένα ιδιοσυγκρασιακό χαρακτήρα για τον καθένα, συνεπώς η (ονειρική) εγκεφαλική δραστηριότητα ποτέ δεν θα είναι ομοιόμορφη για όλους».




Είδαν το φως να... γέρνει, Gravity-Bending Find Leads to Kepler Meeting Einstein

Καλλιτεχνική απεικόνιση της καμπύλωσης του φωτός που προέκυψε όταν ο λευκός νάνος πλησίασε κοντά στον κόκκινο νάνο. This artist's concept depicts a dense, dead star called a white dwarf crossing in front of a small, red star. The white dwarf's gravity is so great it bends and magnifies light from the red star. Image credit: NASA/JPL-Caltech

Διεθνής ερευνητική ομάδα έστρεψε τον φακό του διαστημικού τηλεσκοπίου Kepler σε ένα δυαδικό σύστημα που αποτελείται από ένα λευκό νάνο και έναν κόκκινο νάνο. Στόχος τους ήταν να μετρήσουν τη μάζα των δύο άστρων. Όμως οι παρατηρήσεις επέτρεψαν στους ερευνητές να γίνουν μάρτυρες και διαφόρων φαινομένων τα οποία βοηθούν στο να γίνει καλύτερη κατανόηση των κοσμικών διεργασιών που λαμβάνουν χώρα στη δημιουργία και εξέλιξη δυαδικών συστημάτων.

Η καμπύλωση και το παράδοξο


This chart shows data from NASA's Kepler space telescope, which looks for planets by monitoring changes in the brightness of stars. As planets orbit in front of a star, they block the starlight, causing periodic dips. The plot on the left shows data collected by Kepler for a star called KOI-256, which is a small red dwarf. At first, astronomers thought the dip in starlight was due to a large planet passing in front of the star. But certain clues, such as the sharpness of the dip, indicated it was actually a white dwarf -- the dense, heavy remains of a star that was once like our sun. In fact, in the data shown at left, the white dwarf is passing behind the red dwarf, an event referred to as a secondary eclipse. The change in brightness is a result of the total light of the system dropping. Image credit: NASA/Ames/JPL-Caltech

Ανάμεσα στα φαινόμενα που παρατήρησαν οι ερευνητές ήταν και η καμπύλωση του φωτός που σημειώθηκε όταν ο λευκός νάνος πλησίασε τον… σύντροφο του. Τα δεδομένα που προκύπτουν από τη συγκεκριμένη παρατήρηση θα βοηθήσουν τους επιστήμονες να διαπιστώσουν αν και σε τι ποσοστό είναι συμβατά με τη Γενική Θεωρία της Σχετικότητας στην οποία ο Αϊνστάιν αναφέρει ότι η βαρύτητα καμπυλώνει το φως.


This artist's animation depicts an ultra-dense dead star, called a white dwarf, passing in front of a small red star. As the white dwarf crosses in front, its gravity is so great that it bends and magnifies the light of the red star. NASA's planet-hunting Kepler space telescope was able to detect this effect, called gravitational lensing, not through direct imaging, but by measuring a strangely subtle dip in the star's brightness. The red dwarf star is cooler and redder than our yellow sun. Its companion is a white dwarf, the burnt-out core of a star that used to be like our sun. Though the white dwarf is about the same diameter as Earth, 40 times smaller than the red dwarf, it is slightly more massive. The two objects circle around each other, but because the red dwarf is a bit less massive, it technically orbits the white dwarf. Kepler is designed to look for planets by monitoring the brightness of stars. If planets cross in front of the stars, the starlight will periodically dip. In this case, the passing object turned out to be a white dwarf not a planet. The finding was serendipitous for astronomers because it allowed them to measure the tiny "gravitational lensing" effect of the white dwarf, a rarely observed phenomenon and a test of Einstein's theory of relativity. These data also helped to precisely measure the white dwarf's mass. Credit: NASA/JPL-Caltech. Music: Andrey Avkhimovich (CC BY)

Οι ερευνητές διαπίστωσαν ότι ο λευκός νάνος έχει μέγεθος παρόμοιο με εκείνο της Γης αλλά μάζα παρόμοια με εκείνη του Ήλιου. Είναι τόσο… βαρύς ώστε ο κόκκινος νάνος, αν και μεγαλύτερος σε μέγεθος, είναι αυτός που κινείται γύρω από τον λευκό γείτονα του. Η έρευνα θα δημοσιευθεί στο προσεχές τεύχος της επιθεώρησης «Astrophysical Journal».