Arts Universe and Philology

Arts Universe and Philology
The blog "Art, Universe, and Philology" is an online platform dedicated to the promotion and exploration of art, science, and philology. Its owner, Konstantinos Vakouftsis, shares his thoughts, analyses, and passion for culture, the universe, and literature with his readers.

Παρασκευή 4 Μαρτίου 2016

Φως στον μηχανισμό γέννησης των νευρώνων. A new technology reveals the genetic origin of newborn neurons in the brain

Η νέα μέθοδος φωτίζει την γέννηση νέων νευρώνων στον εγκέφαλο. Our brain is home to different types of neurons, each with their own genetic signature that defines their function. These neurons are derived from progenitor cells, which are specialized stem cells that have the ability to divide to give rise to neurons. Today, neuroscientists from the Faculty of Medicine at the University of Geneva (UNIGE) shed light on the mechanisms that allow progenitors to generate neurons. Neurons (stock image). Credit: © ktsdesign / Fotolia

Επιστήμονες στην Ελβετία - μεταξύ των οποίων ο διακεκριμένος καθηγητής γενετικής Εμμανουήλ Δερμιτζάκης- έριξαν για πρώτη φορά φως στους μηχανισμούς μέσω των οποίων γεννιούνται νέα εγκεφαλικά κύτταρα (νευρώνες) από βλαστικά κύτταρα του εγκεφάλου.

Η τεχνολογία

Οι ερευνητές, με επικεφαλής τον νευροεπιστήμονα Ντενί Ζαμποντόν του Τμήματος Βασικών Νευροεπιστημών της Ιατρικής Σχολής του Πανεπιστημίου της Γενεύης ανέπτυξαν μια νέα τεχνολογία με την ονομασία FlashTag, η οποία καθιστά δυνατή την παρακολούθηση των νευρώνων, καθώς γεννιούνται.

Η δυνατότητα αυτή επέτρεψε στους επιστήμονες να απομονώσουν και να παρατηρήσουν επιμέρους νευρώνες σε πραγματικό χρόνο, ακριβώς τη στιγμή που δημιουργούνται. Αυτό βοήθησε επίσης τους ερευνητές να αποκωδικοποιήσουν για πρώτη φορά τον βασικό γενετικό κώδικα που επιτρέπει την κατασκευή ενός νευρώνα.

Η ανακάλυψη αυτή όχι μόνο διευρύνει την κατανόηση του πώς αναπτύσσεται ο εγκέφαλος, αλλά -το κυριότερο- ανοίγει το δρόμο για να χρησιμοποιηθεί αυτός ο γενετικός κώδικας, προκειμένου στο μέλλον να δημιουργηθούν νευρώνες από βλαστικά κύτταρα. Έτσι, όχι μόνο θα κατανοηθούν καλύτερα οι διάφορες νευρολογικές παθήσεις (αυτισμός, σχιζοφρένεια κ.α.), αλλά πιθανώς ανοίγουν και νέες προοπτικές για τη θεραπεία τους.

Η εγκεφαλική υπογραφή

This is an expression of all the genes of a neuron during the first hours after its birth. Each circle represents a development stage (6h, 12h, 24h), and the colored points within each circle represent the level of gene expression. Credit: Jabaudon Lab, UNIGE

Ο εγκέφαλος διαθέτει πολλά διαφορετικά είδη νευρώνων, το καθένα με τη δική του ξεχωριστή γενετική «υπογραφή», η οποία καθορίζει και την αντίστοιχη εξειδίκευση και λειτουργία του. Όλοι οι νευρώνες προέρχονται από προγονικά βλαστικού τύπου κύτταρα.

Με την τεχνική FlashTag, κάθε φορά που ένα βλαστικό κύτταρο γεννά ένα νευρώνα, αυτός αμέσως καθίσταται ορατός χάρη σε ένα φωσφορίζοντα δείκτη. Οι επιστήμονες, στη συνέχεια, μπορούν να παρακολουθούν καθένα ξεχωριστό νευρώνα και να βλέπουν ποια γονίδια ενεργοποιούνται (εκφράζονται) τις πρώτες ώρες μετά τη δημιουργία του. Επίσης, στη συνέχεια, είναι σε θέση να καταγράφουν τις εξελικτικές αλλαγές που συμβαίνουν σε βάθος χρόνου στη γονιδιακή έκφραση κάθε νευρώνα.

«Μέχρι τώρα είχαμε μόνο λίγες φωτογραφίες με τις οποίες έπρεπε να ανακατασκευάσουμε την ιστορία των νευρώνων, πράγμα που άφηνε μεγάλα περιθώρια για εικασίες. Χάρη στο FlashTag, έχουμε πλέον μια κανονική γενετική ταινία να ξετυλίγεται μπροστά στα μάτια μας», δήλωσε ο Ζαμποντόν.

Τα πειράματα

Δοκιμάζοντας την τεχνική στον εγκεφαλικό φλοιό ποντικιών, οι επιστήμονες εντόπισαν τα γονίδια-κλειδιά για την ανάπτυξη των νευρώνων. Ορισμένα από αυτά τα γονίδια φαίνεται να εμπλέκονται στις νευροαναπτυξιακές και νευροεκφυλιστικές παθήσεις, οι οποίες μπορεί να εμφανιστούν πολλά χρόνια μετά τη γέννηση των νευρώνων.

Οι ερευνητές δεν αποκλείουν να υπάρχει ήδη μια γενετική προδιάθεση στους νευρώνες, οι οποίοι αργότερα θα δυσλειτουργήσουν, υπό την επήρεια και περιβαλλοντικών παραγόντων. Γι' αυτό, θα αναζητήσουν πιθανές πρώιμες ενδείξεις ανωμαλίας και μελλοντικών παθήσεων στους νεογέννητους νευρώνες, τώρα πια που τους έχουν «βάλει στο μάτι» κυριολεκτικά.

Ήδη, γνωρίζοντας τον γενετικό κώδικα των νευρώνων, προχώρησαν δοκιμαστικά στην τροποποίηση (αλλαγή έκφρασης) ορισμένων γονιδίων, επεμβαίνοντας έτσι στο «σενάριο» ανάπτυξης των εγκεφαλικών κυττάρων και επιταχύνοντας την ανάπτυξή τους. Μάλιστα οι ερευνητές δημιούργησαν μια ιστοσελίδα, ώστε και άλλοι επιστήμονες να χρησιμοποιήσουν ελεύθερα το νέο εργαλείο FlashTag, λαμβάνοντας υπόψη ότι το ανθρώπινο γονιδίωμα περιέχει περίπου 20.000 γονίδια και κάθε μία ερευνητική ομάδα δεν μπορεί να εστιαστεί παρά σε μερικά μόνο από αυτά κάθε φορά.

Πηγή: "Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex" Science (2016). DOI: 10.1126/science.aad8361 

Είναι αυτός ο γαλαξίας Νο1; GN-z11: Astronomers Discover Farthest Galaxy Yet

Στην ένθετη εικόνα σημειώνεται ο γαλαξίας GN-z11 που είναι ο αρχαιότερος και πιο μακρινός που έχει εντοπιστεί μέχρι σήμερα στο Σύμπαν. Using the NASA/ESA Hubble Space Telescope, astronomers have found a surprisingly bright, infant galaxy 13.4 billion light-years from us, making it the most distant galaxy ever detected. GN-z11, shown in the inset, is seen as it was 13.4 billion years in the past, just 400 million years after the Big Bang. Image credit: NASA / ESA / P. Oesch, Yale University / G. Brammer, STScI / P. van Dokkum, Yale University / G. Illingworth, University of California, Santa Cruz.

Αστρονόμοι ανακάλυψαν, με τη βοήθεια του διαστημικού τηλεσκοπίου Hubble, ένα γαλαξία που βρίσκεται σε απόσταση 13,4 δισεκατομμυρίων ετών φωτός από τη Γη. Φαίνεται ότι σχηματίστηκε περίπου 400 εκ. έτη μετά τη γέννηση του Σύμπαντος και είναι ο αρχαιότερος και πιο μακρινός που έχει ποτέ εντοπισθεί μέχρι σήμερα.

EGSY8p7 was the most distant confirmed galaxy whose spectrum obtained with the W. M. Keck Observatory places it at a redshift of 8.68 at a time when the Universe was less than 600 million years old. Image credit: NASA / ESA / JPL-Caltech / I. Labbe, Leiden University.

Το προηγούμενο ρεκόρ κατείχε ο γαλαξίας EGSY8p7 που βρίσκεται σε απόσταση 13.2 δισεκατομμυρίων ετών φωτός από εμάς.

Μυστηριώδης Μαθουσάλας

This graphic shows a timeline of the Universe, stretching from the present day (left) all the way back to the Big Bang (right). The position of GN-z11 is shown not far from where the first stars began to form. The previous record holder’s position is also identified. Image credit: NASA / ESA / A. Field, STScI.

Ο γαλαξίας GN-z11 βρίσκεται στην κατεύθυνση του αστερισμού της Μεγάλης Άρκτου και κατά πάσα πιθανότητα ανήκει στην πρώτη γενιά γαλαξιών του Σύμπαντος. Ο γαλαξίας αυτός είναι 25 φορές μικρότερος από τον δικό μας και η συνολική μάζα των άστρων του είναι μόλις το 1% του δικού μας γαλαξία. Όμως αναπτύσσεται γοργά, δημιουργώντας νέα άστρα με ρυθμό 20 φορές μεγαλύτερο από ό,τι κάνει ο δικός μας σήμερα. Γι' αυτό, άλλωστε, είναι τόσο φωτεινός, ώστε να καταστεί εφικτό να παρατηρηθεί.

Οι ερευνητές, με επικεφαλής τον Πασκάλ Οεσκ του Πανεπιστημίου Γέιλ δήλωσαν ότι για να κάνουν την ανακάλυψη, χρειάστηκε να φέρουν το «Hubble» στα όρια των δυνατοτήτων του. Μέχρι σήμερα, θεωρείτο ότι μόνο ο διάδοχος του Hubble, το διαστημικό τηλεσκόπιο James Webb που θα εκτοξευθεί το 2018, θα μπορούσε να «δει» τόσο μακριά στο χώρο και στο χρόνο. Οι αστρονόμοι πιστεύουν ότι το ρεκόρ απόστασης γαλαξία δεν θα καταρριφθεί ξανά από το Hubble ή άλλο υπάρχον τηλεσκόπιο, μέχρι το James Webb τεθεί σε λειτουργία.

Η ανακάλυψη επιβεβαιώνει ότι ορισμένοι απρόσμενα φωτεινοί γαλαξίες βρίσκονται σε τεράστιες αποστάσεις από τη Γη και δημιουργήθηκαν πολύ γρήγορα στο σύμπαν. Πάντως οι επιστήμονες αναρωτιούνται πώς είναι δυνατό να υπάρχει ένας τόσο μεγάλος σχετικά γαλαξίας μόλις 200 έως 300 εκατομμύρια χρόνια μετά τη δημιουργία των πρώτων άστρων στο σύμπαν, κάτι που δεν προβλέπουν οι έως τώρα θεωρίες. Έτσι, η δημιουργία του GN-z11 παραμένει ένα μυστήριο. Η ανακάλυψη θα δημοσιευθεί στο επόμενο τεύχος της επιθεώρησης «Astrophysical Journal (arXiv.org preprint)».

Πέμπτη 3 Μαρτίου 2016

Tο μυστήριο της σκοτεινής ύλης. Dark Matter Mystery

Illustration of Dark Matter in Space via Shutterstock.

Και μόνο η ονομασία της – σκοτεινή ύλη – υποδηλώνει την άγνοιά μας για τη φύση της. Το βίντεο που ακολουθεί, από το Ινστιτούτο Φυσικής του Πανεπιστημίου του Όσλο, μας εξηγεί γιατί πρέπει να υπάρχει η σκοτεινή ύλη και με ποιο τρόπο θα μπορούσαμε να την ανιχνεύσουμε πειραματικά:

How do we know that dark matter exists? And how can we find it in experiments?

Ταπεινός μύκητας είναι ο αρχαιότερος γνωστός άποικος της ξηράς. Scientist Finds Fossil of Oldest Known Fungus

Η ζωή εκτιμάται ότι εμφανίστηκε στους ωκεανούς πριν από τουλάχιστον 3,5 δισεκατομμύρια χρόνια. According to Dr. Martin Smith, a paleontologist at Durham University, UK, a fossil dating from the Silurian period of the Palaeozoic era, about 440 million years ago, is not only the oldest example of a fossilized fungus, but is also the oldest fossil of any terrestrial organism yet found. Fossiliferous mudstone containing Tortotubus protuberans. Image credit: Martin R. Smith.

Υπήρξε κάποτε μια εποχή που η ξηρά της Γης ήταν μια στείρα έκταση από βράχια, μια έρημος που έμεινε ακατοίκητη για δισεκατομμύρια χρόνια. Όλα άλλαξαν με πρωτοπόρους όπως ο Tortotubus, ένας μύκητας που αναγνωρίστηκε ως το αρχαιότερο γνωστό χερσαίο είδος. Τα πολύτιμα απολιθώματα είναι μικροσκοπικές ραβδοειδείς δομές, πιο κοντές από το πάχος μιας ανθρώπινης τρίχας, και χρονολογούνται στα 440 εκατομμύρια χρόνια.

Η ζωή εκτιμάται ότι εμφανίστηκε στους ωκεανούς πριν από τουλάχιστον 3,5 δισεκατομμύρια χρόνια, στη μορφή μικροβίων όπως τα βακτήρια. Αν και είναι δύσκολο να εξακριβωθεί πότε ακριβώς τα θαλάσσια είδη άρχισαν να επεκτείνονται στην ξηρά, η επικρατέστερη άποψη είναι ότι μετάβαση άρχισε τον Παλαιοζωικό αιώνα, πριν από 500 έως 450 εκατομμύρια χρόνια.

Ο Tortotubus είναι μεν ο αρχαιότερος μύκητας, δεν μπορεί όμως να ήταν ο πρώτος οργανισμός στην ξηρά: οι μύκητες δεν μπορούν να παράγουν μόνοι τους την τροφή τους όπως τα φυτά, και χρειάζονται οργανική ύλη από νεκρούς οργανισμούς. Με τι τρεφόταν τότε αυτός ο αρχαίος κάτοικος της χέρσου; Σίγουρα υπήρχαν τότε στην ξηρά μικρόβια και πρωτόγονα φυτά, τα οποία όμως δεν απολιθώνονται και ίσως μείνουν άγνωστα για πάντα.

«Την περίοδο που έζησε ο Tortotubus, η ζωή περιοριζόταν σχεδόν αποκλειστικά στους ωκεανούς. Τίποτα πιο περίπλοκο από φυτά που έμοιαζαν με βρύα και λειχήνες δεν είχε εξελιχθεί στην ξηρά» λέει ο Μάρτιν Σμιθ του Πανεπιστημίου του Ντέραμ στη Βρετανία, συγγραφέας της νέας μελέτης στην επιθεώρηση «Botanical Journal of the Linnean Society».

Ο ρόλος τους

Τα απολιθώματα μοιάζουν με τις χαρακτηριστικές «υφές» των μυκήτων. Selection of filaments of Tortotubus protuberans from Gotland, Sweden, showing stages in development of filamentous envelope. Image credit: Martin R. Smith.

Οι μύκητες έπαιξαν καθοριστικό ρόλο στη δημιουργία των χερσαίων οικοσυστημάτων. Μέχρι σήμερα, παραμένουν ο κυριότερος παράγοντας αποσύνθεσης της νεκρής οργανικής ύλης και ανακύκλωσης των θρεπτικών συστατικών -χωρίς τις ταπεινές μούχλες, η ζωή όπως την γνωρίζουμε θα ήταν αδύνατο να υπάρξει.

Για την ακρίβεια, οι μύκητες και σε μικρότερο βαθμό τα βακτήρια δημιούργησαν από το μηδέν το χώμα στο οποίο αναπτύσσονται σήμερα δάση και λιβάδια -όλο αυτό το οργανικό υλικό είναι προϊόν αποσύνθεσης νεκρών ζώων, φυτών και μικροβίων. Όπως λέει ο Δρ Σμιθ, «πριν εμφανιστούν τα αγγειόσπερμα φυτά και τα δέντρα, ή τα ζώα που εξαρτώνται αυτά τα φυτά, ήταν απαραίτητο να αρχίσουν οι διαδικασίες της αποσύνθεσης και του σχηματισμού των εδαφών».

Σε αντίθεση με τα πρώτα χερσαία φυτά, τα οποία κατάγονταν από φύκη και δεν είχαν ρίζες που διαπερνούν το υπόστρωμα όπου αναπτύσσονται, οι μύκητες έπαιξαν σημαντικό ρόλο στη σταθεροποίηση των ιζημάτων και το σχηματισμό εδαφών. Και αυτό χάρη στις μακριές ίνες, γνωστές ως υφές, τις οποίες απλώνουν οι μύκητες στο περιβάλλον τους αναζητώντας θρεπτικά συστατικά.

Με αυτές ακριβώς τις ίνες μοιάζουν τα απολιθώματα του Tortotubus. Είχαν ανακαλυφθεί στη Σουηδία και τη Σκοτία τη δεκαετία του 1980, μέχρι σήμερα όμως κανείς δεν είχε καταλάβει ότι όλα ήταν απολιθώματα του ίδιου οργανισμού.

Δομές που απορροφούν θρεπτικά συστατικά από το περιβάλλον διακρίνονται στο ηλεκτρονικό μικροσκόπιο. Tortotubus is the oldest fossilised land organism ever found. Photo: © National News and Pictures

Μελετώντας τα απολιθώματα στο μικροσκόπιο, ο Δρ Σμιθ, ο οποίος πραγματοποίησε τη μελέτη στο Πανεπιστήμιο του Κέμπριτζ πριν μετακομίσει στο Ντέραμ, κατάλαβε ότι επρόκειτο για διαφορετικά στάδια ανάπτυξης του ίδιου οργανισμού. Καθοριστικό ρόλο έπαιξε η ανακάλυψη δομών που υπάρχουν πάνω στις υφές των μυκήτων και επιτρέπουν την απορρόφηση θρεπτικών συστατικών. Επιπλέον, όμως, ο Tortotubus παρουσιάζει χαρακτηριστικά που παραπέμπει στην ομάδα των μυκήτων που παράγουν μανιτάρια.  Δεν αποκλείεται, επομένως, ότι τα μανιτάρια είχαν αρχίσει να ξεφυτρώνουν στη στεριά πολύ πριν καταφθάσουν τα πρώτα ζώα.

Μυστηριώδη κοσμικά «σήματα» προκαλούν συναγερμό. Repeating fast radio bursts found coming from outside our galaxy

Οι επιστήμονες αναζητούν εναγωνίως την πηγή των παράξενων κοσμικών «σημάτων» που έφτασαν στη Γη. This artist's rendition shows a millisecond pulse of radio waves, a "fast radio burst" from an unknown astrophysical source, streaming into the giant Arecibo telescope out of a starry sky. Using Arecibo, researchers have for the first time witnessed a fast radio burst repeat, coming one step closer to solving the mystery of the bursts' cosmic origins. Credit: Danielle Futselaar

Οι αστρονόμοι για πρώτη φορά εντόπισαν «γρήγορες εκλάμψεις ραδιοκυμάτων» (Fast Radio Bursts-FRB), οι οποίες ήσαν επαναλαμβανόμενες. Φαίνεται να προέρχονται από μια κοινή αινιγματική πηγή πολύ πέρα από τον γαλαξία μας. Μέχρι σήμερα οι επιστήμονες είχαν ανιχνεύσει τέτοιες σπάνιες ραδιο-εκρήξεις ως συμβάντα «μια κι έξω» και ποτέ ως επαναλαμβανόμενα φαινόμενα. Οι επιστήμονες αναζητούν τώρα την πηγή των «σημάτων» αυτών και μέχρι να δοθεί απάντηση οι θεωρίες θα είναι πολλές και φυσικά κάποιοι θα αναφέρουν ότι πρόκειται για προϊόν προηγμένου εξωγήινου πολιτισμού.

Ο εντοπισμός

Για πρώτη φορά εντοπίζονται επαναλαμβανόμενα ραδιοκύματα FRB. An international research team used a combination of radio and optical telescopes to identify the precise location of a fast radio burst (FRB) in a distant galaxy, allowing them to conduct a unique census of the universe's matter content. Their result confirms current cosmological models of the distribution of matter in the universe. The infrared image on the left shows the field of view of the Parkes radio telescope with the area where the signal came from marked in cyan. On the right are successive zoom-ins on that area. At the bottom right is the Subaru optical image of the FRB galaxy, with the superimposed elliptical regions showing the location of the fading 6-day afterglow seen with ATCA. Credit: © D. Kaplan (UWM), E. F. Keane (SKAO)

Ερευνητές από διάφορες χώρες, με επικεφαλής τη Λάουρα Σπίτλερ του γερμανικού Ινστιτούτου Ραδιο-Αστρονομίας Μαξ Πλανκ στη Βόννη, ανέφεραν ότι η πηγή του φαινομένου πρέπει να είναι κάποιο υπερβολικά ισχυρό αντικείμενο, που περιοδικά παράγει τέτοιες ραδιο-εκρήξεις σε διάστημα μικρότερο του λεπτού.

This image shows the increased delay in the arrival time of the Fast Radio Burst as a function of the frequency. The delay in the signal is caused by the material it goes through between its point of origin and Earth. Image Credit: E. F. Keane (SKAO).

Οι εκλάμψεις FRB, που διαρκούν ελάχιστα χιλιοστά του δευτερολέπτου αλλά είναι πολύ ισχυρές, προβληματίζουν τους επιστήμονες. Για πρώτη φορά εντοπίσθηκε μια τέτοια «έκρηξη» πριν περίπου δέκα χρόνια, αλλά παραμένει άγνωστο τι τις προκαλεί. Έχει προταθεί ως εξήγηση η έκρηξη ενός υπερκαινοφανούς αστέρα (σούπερ-νόβα), η βαρυτική κατάρρευση ενός αστέρα νετρονίων (πάλσαρ) σε μια μαύρη τρύπα ή μια έκρηξη ακτίνων-γάμα.

Όμως η ανακάλυψη επαναλαμβανόμενων σαν φλας FRB για πρώτη φορά από το ραδιοτηλεσκόπιο Αρεσίμπο στο Πουέρτο Ρίκο -το μεγαλύτερο ραδιοτηλεσκόπιο στον κόσμο, με διάμετρο 305 μέτρων- περιπλέκει τα πράγματα και αναζητάται πλέον μια πιο «εξωτική» πηγή προέλευσης. Η ανακάλυψη δημοσιεύεται στην επιθεώρηση «Nature».

Πηγή: Nature, DOI: 10.1038/nature17140 

Τετάρτη 2 Μαρτίου 2016

Βρέθηκε το αρχαιότερο νευρικό δίκτυο! Paleontologists Find 520 Million-Year-Old Fossilized Central Nervous System

Ανήκει σε ένα περίεργο πλάσμα που ζούσε πριν από 520 εκ. έτη. A team of paleontologists led by Yunnan University scientist Xi-guang Zhang has unearthed one of the oldest fossils of the central nervous system yet found. Complete specimen of Chengjiangocaris kunmingensis and morphological reconstruction. Image credit: Jie Yang, Yunnan University / Javier Ortega-Hernández, University of Cambridge.

Ερευνητές από τη Βρετανία, τη Γερμανία και την Κίνα ανακοίνωσαν ότι ανακάλυψαν ένα απολίθωμα ενός περίεργου πλάσματος, που ζούσε πριν από περίπου 520 εκατομμύρια χρόνια και διέθετε το αρχαιότερο κεντρικό νευρικό σύστημα που έχει ποτέ εντοπισθεί.

Η ανακάλυψη

Το νευρικό σύστημα έκανε την εμφάνιση του πριν από τουλάχιστον 520 εκ. έτη. Magnification of C. kunmingensis nerve cord and ganglia (ga) linked by longitudinal connectives (cn). Credit: Yu Liu (Ludwig-Maximilians-University, Germany)

Το απολίθωμα βρέθηκε στη νότια Κίνα και είναι τόσο καλοδιατηρημένο, που είναι ορατά τα επιμέρους μικροσκοπικά νεύρα. Η σχετική δημοσίευση, με επικεφαλής τον δρ. Χαβιέ Ορτέγκα-Χερνάντεθ του Τμήματος Ζωολογίας του Πανεπιστημίου του Κέμπριτζ, έγινε στην επιθεώρηση «Proceedings of the National Academy of Sciences».

Το ζώο, που έμοιαζε με μαλακόστρακο (αστακό) και έλαβε την ονομασία Chengjiangocaris kunmingensis, έζησε στη διάρκεια της λεγόμενης «Κάμβριας έκρηξης», μίας περιόδου ταχείας εξέλιξης και μαζικής εμφάνισης νέων ειδών ζώων πριν περίπου μισό δισεκατομμύριο χρόνια. Ήταν ένας πρόγονος των σύγχρονων αρθρόποδων, μιας ομάδας που περιλαμβάνει τα μαλακόστρακα, τα έντομα και τις αράχνες.

Τα απολιθώματα

Το απολίθωμα του Chengjiangocaris kunmingensis που είναι το αρχαιότερο πλάσμα με νευρικό σύστημα. The Chengjiangocaris kunmingensis lived during the early Cambrian epoch. Fossilised soft tissue, and nerve tissue in particular, is rare. Photograph: Jie Yang (Yunnan University, China)

Κατά την τελευταία πενταετία έχουν έλθει στο φως μερικώς απολιθωμένα νευρικά συστήματα διαφόρων ειδών, κυρίως εγκεφάλων, ποτέ όμως ενός τόσο καλά διατηρημένου κεντρικού νευρικού συστήματος.

Η συντριπτική πλειονότητα των απολιθωμάτων που έχουν βρει οι παλαιοντολόγοι, αφορά οστά και άλλα σκληρά μέρη του σώματος, όπως δόντια ή εξωσκελετούς. Είναι υπερβολικά σπάνιο να βρεθούν απολιθώματα νευρικού συστήματος και άλλων μαλακών ιστών.

Το κεντρικό νευρικό σύστημα συντονίζει όλες τις νευρικές και κινητικές λειτουργίες ενός οργανισμού. Στα σπονδυλτωτά συνίσταται από τον εγκέφαλο και το νωτιαίο μυελό. Στα αρθρόποδα, αντί μυελού, υπάρχει μια σειρά από συνδεδεμένα σφαιρικά γάγγλια, που θυμίζουν αλυσίδα. Το Chengjiangocaris kunmingensis είχε μια τέτοια νευρική χορδή που διέτρεχε το σώμα του, με κάθε «κρίκο» της αλυσίδας να ελέγχει και ένα ξεχωριστό ζεύγος ποδιών.

Νέο σωματίδιο που συνίσταται από 4 κουάρκ ανακάλυψαν στο Fermilab. Physicists May Have Discovered a New "Tetraquark" Particle

Νέο «εξωτικό» σωματίδιο ανακάλυψαν επιστήμονες στις ΗΠΑ. DZero announces the newest member of the tetraquark family. Artwork by Fermilab

Ένα νέο μέλος της «οικογένειας» εξωτικών σωματιδίων με όνομα τετρακουάρκ, ανακάλυψαν επιστήμονες από την κοινοπραξία DZero στο Εθνικό Εργαστήριο Επιταχυντών Fermi (Fermilab) στις ΗΠΑ. Όπως και τα υπόλοιπα μέλη της ίδιας «οικογένειας», έτσι και το νέο σωματίδιο αποτελείται από τέσσερα κουάρκ.

Τα κουάρκ είναι θεμελιώδεις δομικοί λίθοι της ύλης που συναντώνται κυρίως στο εσωτερικό πρωτονίων και νετρονίων, και διακρίνονται σε έξι τύπους, ανάλογα με τη «γεύση» ή το «άρωμά» τους.

Artwork by Fermilab

Η ιδιαιτερότητα του συγκεκριμένου σωματιδίου, όπως και της υπόλοιπης «οικογένειας» στην οποία ανήκει, είναι ο αριθμός των κουάρκ από τα οποία αποτελείται. Κι αυτό γιατί, κατά κανόνα, τα κουάρκ ενώνονται ανά δύο ή τρία, για να σχηματίσουν βαρύτερα σωματίδια.

Το πρώτο τετρακουάρκ εντοπίστηκε το 2003, στο πείραμα Belle. Αν και από τότε έχουν βρεθεί αρκετά ακόμη σωματίδια της ίδιας κατηγορίας, το σωμάτιο που βρέθηκε από την κοινοπραξία DZero είναι το πρώτο που έχει σχηματισθεί από τέσσερα κουάρκ με διαφορετικά «αρώματα» ή «γεύσεις».

DZero experiment. Photo by Reidar Hahn, Fermilab

Ο εντοπισμός του έγινε μέσω της ανάλυσης δεδομένων από τον επιταχυντή Tevatron του Fermilab. Παρόλο που η λειτουργία του επιταχυντή έχει σταματήσει από το 2011, οι επιστήμονες συνεχίζουν να επεξεργάζονται τις δισεκατομμύρια μετρήσεις που προέκυψαν από τις συγκρούσεις στο εσωτερικό του.

Οι πρώτες ενδείξεις για το νέο τετρακουάρκ χρονολογούνται από τον περασμένο Ιούλιο, με τους ερευνητές να δίνουν το όνομα X(5568) στο εύρημά τους. Όπως πάντως έχει συμβεί και με άλλες ανακαλύψεις, αρχικά οι επιστήμονες δεν θεώρησαν πως το X(5568) πρόκειται όντως για ένα νέο σωματίδιο.

Το νέο σωματίδιο που αποτελείται από 4 κουάρκ, διασπάται σε δύο μεσόνια, ή σε 2 ζεύγη κουάρκ, τα οποία στη συνέχεια διασπώνται σε άλλα σωματίδια. The potential new "tetraquark" particle, made of four quarks, decays into two mesons, or pairings of two quarks, which then decay into other daughter particles. Credit: Fermilab./V.M. Abazov et al.

«Στην αρχή, δεν πιστεύαμε πως είχαμε βρει ένα καινούριο σωμάτιο», λέει στο σάιτ symmetrymagazine.org ο Ντμίτρι Ντενίσοφ, εκπρόσωπος Τύπου του DZero. «Μόνον όταν επαληθεύσαμε πολλές φορές το αποτέλεσμα, αρχίσαμε να συνειδητοποιούμε ότι το σήμα δεν μπορούσε να εξηγηθεί από κάποια γνωστή διαδικασία, και πως ήταν η απόδειξη ενός νέου σωματιδίου».

Έτσι κι αλλιώς, το X(5568) ξεχωρίζει από τα υπόλοιπα τετρακουάρκ. Κι αυτό γιατί ενώ όλα τα υπόλοιπα σωματίδια της συγκεκριμένης κατηγορίας περιλαμβάνουν τουλάχιστον δύο κουάρκ με ίδια «γεύση», το X(5568) αποτελείται από κουάρκ διαφορετικών γεύσεων: πάνω, κάτω, παράξενο και χαμηλό.

«Το επόμενο βήμα είναι να καταλάβουμε με ποιον ακριβώς τρόπο συνδυάζονται αυτά τα τέσσερα κουάρκ», προσθέτει ο Πολ Γκράνις, ερευνητής από την κοινοπραξία.

Αν και δεν υπάρχει κάποιος φυσικός νόμος που να απαγορεύει την ένωση τεσσάρων δομικών λίθων, τα τετρακουάρκ είναι σπάνια. Οι επιστήμονες ελπίζουν πως θα μπορέσουν να εξηγήσουν τον λόγο μελετώντας την ιδιότητες του X(5568), όπως για παράδειγμα τις διασπάσεις του.

Με αυτό τον τρόπο, αναμένεται να προσφέρουν επίσης στους θεωρητικούς φυσικούς καινούρια στοιχεία για την ανάπτυξη μοντέλων που θα εξηγούν ακόμη καλύτερα τη δομή της ύλης.