Arts Universe and Philology

Arts Universe and Philology
The blog "Art, Universe, and Philology" is an online platform dedicated to the promotion and exploration of art, science, and philology. Its owner, Konstantinos Vakouftsis, shares his thoughts, analyses, and passion for culture, the universe, and literature with his readers.

Τετάρτη 16 Δεκεμβρίου 2020

Μελετώντας τον πιο απομακρυσμένο γαλαξία του σύμπαντος. The farthest galaxy in the universe

GN-z11: ένας γαλαξίας πολύ πολύ μακριά. Λόγω της διαστολής του σύμπαντος, παρότι ο γαλαξίας αυτός απέχει από τη Γη απόσταση 13,4 δισεκατομμύρια έτη φωτός, το φως από αυτόν έχει διανύσει 32 δισεκατομμύρια έτη φωτός μέχρι να φτάσει σε μας. A team of astronomers used the Keck I telescope to measure the distance to an ancient galaxy. They deduced the target galaxy GN-z11 is not only the oldest galaxy but also the most distant. It's so distant it defines the very boundary of the observable universe itself. The team hopes this study can shed light on a period of cosmological history when the universe was only a few hundred million years old. Far far away. Due to the expansion of the universe, even though the galaxy GN-z11 is 13.4 billion years old, the light from it has travelled 32 billion light years to reach us. Image: Pixabay CC-0

Μια ομάδα αστρονόμων χρησιμοποιώντας το τηλεσκόπιο Keck I μελέτησε τον γαλαξία GN-z11, καταλήγοντας στο συμπέρασμα ότι όντως είναι ο αρχαιότερος γαλαξίας στο σύμπαν και ο πιο απομακρυσμένος από τη Γη. Βρίσκεται τόσο μακριά που σχεδόν καθορίζει τα όρια του παρατηρήσιμου σύμπαντος. Αυτή η μελέτη μπορεί να ρίξει φως στην χρονική περίοδο που το σύμπαν είχε ηλικία μόνο μερικές εκατοντάδες εκατομμύρια χρόνια.

Μερικοί άνθρωποι όταν την νύχτα στρέφουν το βλέμμα τους στον έναστρο ουρανό, καθώς θαυμάζουν το πλήθος των άστρων στην απεραντοσύνη του σύμπαντος, καταλαμβάνονται είτε από ποιητικό είτε από υπαρξιακό οίστρο, ανακαλώντας θεμελιώδεις ερωτήσεις όπως: «πόσο μεγάλο είναι το σύμπαν;» ή «πώς και πότε άρχισαν να σχηματίζονται οι γαλαξίες;» κ.ο.κ.

Οι αστρονόμοι παίρνουν αυτές τις ερωτήσεις πολύ σοβαρά και χρησιμοποιούν όλα τα επιστημονικά εργαλεία που διαθέτουν για να τις απαντήσουν. Ο καθηγητής Nobunari Kashikawa από το Τμήμα Αστρονομίας στο Πανεπιστήμιο του Τόκιο καθοδηγείται από την περιέργειά του για τους γαλαξίες. Συγκεκριμένα, αναζήτησε τον πιο μακρινό που μπορούμε να παρατηρήσουμε σκοπεύοντας να κατανοήσει πώς και πότε σχηματίστηκε.

«Από προηγούμενες μελέτες, ο γαλαξίας GN-z11 φαίνεται να είναι ο πιο απομακρυσμένος γαλαξίας από τη Γη που έχουμε ανιχνεύσει μέχρι σήμερα, σε απόσταση 13,4 δισεκατομμύρια έτη φωτός από την Γη», δήλωσε ο Kashikawa. «Αλλά η μέτρηση και η επαλήθευση μιας τέτοιας απόστασης δεν είναι εύκολη υπόθεση».

Ο Kashikawa και η ομάδα του μέτρησαν αυτό που είναι γνωστό ως «μετατόπιση στο ερυθρό» του γαλαξία GN-z11. Αυτό αναφέρεται στο γεγονός ότι στο φως των πιο απομακρυσμένων άστρων και γαλαξιών, οι γραμμές εκπομπής και απορρόφησης που οφείλονται σε συγκεκριμένα στοιχεία, είναι όλο και περισσότερο μετατοπισμένες προς το ερυθρό – προς τις χαμηλότερες συχνότητες, εξαιτίας του φαινομένου Ντόπλερ. Σύμφωνα με το φαινόμενο αυτό το μήκος κύματος (και η συχνότητα) ενός κύματος μεταβάλλεται ανάλογα με τη σχετική ταχύτητα μεταξύ πηγής και παρατηρητή. (Ο ήχος της σειρήνας ενός περιπολικού που ακούμε όταν αυτό μας πλησιάζει, είναι διαφορετικός από τον ήχο που ακούμε όταν αυτό μας προσπεράσει.) Οι μετατοπισμένες γραμμές απορρόφησης που παρατηρούνται στο φως απομακρυσμένων γαλαξιών, οφείλονται στο γεγονός ότι οι πηγές αυτού του φωτός – οι γαλαξίες – απομακρύνονται από μας. Μετρώντας πόσο μετατοπισμένες είναι αυτές οι γραμμές, οι αστρονόμοι μπορούν να υπολογίσουν την απόσταση των γαλαξιών από τη Γη.

(Πάνω) Το βέλος δείχνει τον γαλαξία GN-z11. (Κάτω) Φασματικές γραμμές από τον γαλαξία. Galaxy GN-z11. (Upper) The arrow points to the most distant galaxy in the universe. (Lower) Carbon emission lines observed in infrared. When it left the galaxy, the signal was ultraviolet light in the region of 0.2 micrometer, but it was redshifted and stretched to over 10 times that to about 2.28 micrometers. © Kashikawa et al.

«Εξετάσαμε ειδικά το υπεριώδες φως, καθώς αυτή είναι η περιοχή του ηλεκτρομαγνητικού φάσματος που περιμέναμε να βρούμε τις μετατοπισμένες γραμμές απορρόφησης», δήλωσε ο Kashikawa. «Το Διαστημικό Τηλεσκόπιο Hubble εντόπισε την υπογραφή πολλές φορές στο φάσμα του GN-z11. Ωστόσο, ακόμη και το Hubble δεν μπορεί να διαχωρίσει τις γραμμές του υπεριώδους στον βαθμό που χρειαζόμασταν. Καταφύγαμε λοιπόν σε έναν πιο κατάλληλο επίγειο φασματογράφο, ένα όργανο ανάλυσης φωτός, τον επονομαζόμενο MOSFIRE, που είναι τοποθετημένος στο τηλεσκόπιο Keck I στη Χαβάη.»

Ο φασματογράφος MOSFIRE κατέγραψε λεπτομερώς το φάσμα του γαλαξία GN-z11, κάτι που επέτρεψε στην ομάδα να κάνει πολύ καλύτερη εκτίμηση της απόστασης από ό,τι ήταν δυνατό με τα παλαιότερα δεδομένα. Όταν οι αστρονόμοι εργάζονται σε αυτές τις κλίμακες, δεν είναι πρακτικό να χρησιμοποιούν τις γνωστές μας μονάδες μήκους. Χρησιμοποιούν μια τιμή που είναι γνωστή ως αριθμός της ερυθράς μετατόπισης και συμβολίζεται με το z. Ο Kashikawa και η ομάδα του βελτίωσαν την ακρίβεια της τιμής z του γαλαξία κατά έναν παράγοντα 100. Εάν οι επόμενες παρατηρήσεις επιβεβαιώσουν αυτό το αποτέλεσμα, τότε οι αστρονόμοι μπορούν με βεβαιότητα να πουν ότι ο GN-z11 είναι ο πιο μακρινός γαλαξίας που έχει εντοπιστεί ποτέ στο σύμπαν.

Πηγές: Linhua Jiang, Nobunari Kashikawa, Shu Wang, Gregory Walth, Luis C. Ho, Zheng Cai, Eiichi Egami, Xiaohui Fan, Kei Ito, Yongming Liang, Daniel Schaerer, Daniel P. Stark. Evidence for GN-z11 as a luminous galaxy at redshift 10.957Nature Astronomy, 2020; DOI: 10.1038/s41550-020-01275-y - https://www.u-tokyo.ac.jp/focus/en/press/z0508_00153.html - https://physicsgg.me/2020/12/16/

 




 

Δευτέρα 14 Δεκεμβρίου 2020

«Σίγουρα θα αστειεύεστε κύριε Φάινμαν». "Surely You're Joking, Mr. Feynman!"

O Richard Feynman και η σύζυγός του Arline, τη δεκαετία του 1940. Richard and Arline, 1940s.

(…) Περπάτησα έξω για λίγο. Ήμουν έκπληκτος που δεν ένοιωθα αυτά που υποτίθεται έπρεπε να νοιώθουν οι άνθρωποι σε τέτοιες περιστάσεις. Ίσως να κορόιδευα τον εαυτό μου. Δεν ήμουν βέβαια καλά, δεν ήμουν όμως και εξαιρετικά ταραγμένος, ίσως γιατί γνωρίζαμε εδώ και πολύ καιρό αυτό που επρόκειτο να συμβεί κι είχα εξοικειωθεί μαζί του.

Richard Feynman as a youth

Είναι πολύ δύσκολο να το εξηγήσω. Αν κάποιος Αρειανός (ο οποίος, ας υποθέσουμε, δεν πεθαίνει ποτέ από ασθένεια ή γηρατειά, μόνο από ατύχημα) ερχόταν εδώ στη Γη κι έβλεπε αυτό το παράξενο γένος όντων, αυτούς τους ανθρώπους που ζουν 70-80 χρόνια ξέροντας ότι πλησιάζει ο θάνατος, θα του φαινόταν τρομερό να ζει κάτω από αυτές τις συνθήκες, γνωρίζοντας ότι η ζωή είναι απλώς προσωρινή. Εμείς όμως οι άνθρωποι ξεπερνάμε σχετικά εύκολα το πρόβλημα αυτό, γελάμε, αστειευόμαστε, ζούμε.

Richard and Arline on their wedding day

Η μόνη διαφορά όμως για μένα και την Αρλήν ήταν ότι αντί να ζήσουμε μαζί 50 χρόνια, ζήσαμε μόνο 5. Ήταν μια ποσοτική μόνο διαφορά, το ψυχολογικό πρόβλημα ήταν ακριβώς το ίδιο. Ο μόνος τρόπος να το κοιτάξουμε διαφορετικά θα αν είχαμε παραδεχθεί «Αυτοί οι άλλοι την έχουν καλύτερα, θα ζήσουν 50 χρόνια περισσότερο», αυτό όμως θα ήταν τρελό. Γιατί θα ‘πρεπε να νιώσουμε δυστυχισμένοι με το να λέμε «Γιατί άραγε είμαστε τόσο άτυχοι; Τι μας φύλαγε ο Θεός, τι κάναμε για να μας αξίζει μια τέτοια τιμωρία;», όλα τέλος πάντων αυτά που – αν κατανοήσεις την πραγματικότητα βαθιά μέσα σου – είναι άσχετα με το θέμα και αναπάντητα, είναι πράγματα που κανείς δεν τα ξέρει. Αυτό που σου συμβαίνει δεν είναι παρά ένα ατύχημα της ζωής. Εμείς όμως είχαμε ζήσει μαζί, είχαμε ζήσει πολύ καλά.

Richard and Arline at the Albuquerque sanatorium

Επέστρεψα στο δωμάτιο της Αρλήν, κάθισα εκεί κι άρχισα να σκέφτομαι όσα συνέβαιναν στο σώμα της: οι πνεύμονες δεν μπορούσαν να τροφοδοτήσουν το αίμα με περισσότερο οξυγόνο, έτσι ο εγκέφαλος θα άρχισε να υπολειτουργεί, μετά θα εξασθενούσε η καρδιά κι η αναπνοή θα γινόταν ολοένα και πιο δύσκολη. Νόμιζα ότι τα συμπτώματα αυτά θα έπαιρναν τη μορφή χιονοστιβάδας, οι βιολογικές λειτουργίες θα αναστέλλονταν και θα επακολουθούσε η τραγική κατάρρευση. Η Αρλήν όμως δεν φάνηκε να ακολουθεί την πορεία αυτή. Έχανε αργά αργά την πνευματική της διαύγεια, κι η αναπνοή της όλο και λιγόστευε μέχρι που δεν υπήρχε πια αναπνοή αλλά μόλις πριν υπήρχε μια σταλιά.

Arline and Richard, 1940s

Η νοσοκόμα πέρασε κάνοντας τον γύρο της και επιβεβαίωσε ότι η Αρλήν ήταν νεκρή. Βγήκε έξω – ήθελα να μείνω μόνος για λίγο. Κάθισα λιγάκι κοντά της και μετά τη φίλησα για τελευταία φορά. Ένοιωσα έκπληξη όταν ανακάλυψα ότι τα μαλλιά της μύριζαν ακριβώς όπως και πριν. Όταν, βέβαια, κάθισα και το σκέφτηκα δεν βρήκα κανένα λόγο γιατί θα έπρεπε να αλλάξει η μυρωδιά των μαλλιών σε τόσο μικρό χρονικό διάστημα. Αλλά για μένα ήταν ένα σοκ γιατί φανταζόμουν ότι μόλις είχε συμβεί κάτι πελώριο – κι όμως τίποτε δεν είχε συμβεί ακόμα.

Την άλλη μέρα πήγα στο νεκροθάλαμο. Ο υπάλληλος εκεί μου έβαλε στο χέρι τα δαχτυλίδια της, που τα είχε βγάλει απ’ το πτώμα. «Θα ‘θελες μήπως να δεις τη γυναίκα σου για τελευταία φορά;», ρώτησε.

«Τι είδους τελευταία – όχι, δεν θέλω να τη δω, όχι! Μόλις πριν την είδα», φώναξα.

«Ναι, τώρα όμως την έχουμε τακτοποιήσει».

Ο άνθρωπος ήταν από άλλο κόσμο. Τακτοποιείται ένα κορμί όταν είναι άψυχο; Δεν ήθελα να ξαναδώ την Αρλήν, θα με αναστάτωνε περισσότερο. Τηλεφώνησα στο γκαράζ που είχε ρυμουλκήσει το αυτοκίνητο, το πήρα κι έβαλα στο πίσω μέρος τα πράγματα της Αρλήν. Μετά πήρα μαζί μου και κάποιον που έκανε ωτοστόπ κι έφυγα απ’ την Αλμπουρκέκ.

Δε θά ‘χαμε κάνει ούτε πέντε μίλια όταν «ΜΠΑΝΓΚ!» κι άλλο σκασμένο λάστιχο. Άρχισα να βρίζω, να καταριέμαι ακατάπαυστα. Ο τύπος που έκανε ωτοστόπ με κοίταζε σαν να έβλεπε ανισόρροπο. «Μα πρόκειται απλώς για κλατάρισμα, έτσι δεν είναι;» ρώταγε και ξαναρώταγε. «Ναι, απλώς ένα κλατάρισμα – κι ύστερα κι άλλο, κι άλλο, κι άλλο, κι άλλο!» Αντικαταστήσαμε το σκασμένο λάστιχο, βάζοντας τη ρεζέρβα, και πήγαμε σιγά σιγά στο Λος Άλαμος, χωρίς να φτιάξω το άλλο λάστιχο. Δεν ήξερα πως να αντικρίσω τους φίλους μου εκεί, δεν ήθελα να βρεθεί κανείς με κατεβασμένα μούτρα και να με ρωτήσει για το θάνατο της Αρλήν. Κάποιος όμως ρώτησε τι συνέβη.

«Πέθανε. Και πως πάει το πρόγραμμα;» ρώτησα.

Κι αυτοί κατάλαβαν ότι δεν ήθελα να γυρίζω συνεχώς γύρω απ’ αυτό το γεγονός. Μόνο ένας βρέθηκε να μου εκφράσει τη συμπάθειά του κι αυτό συνέβη επειδή έτυχε να λείπει απ’ το Λος Άλαμος την ημέρα που είχα επιστρέψει.

Μια νύχτα ονειρεύτηκα την Αρλήν, αμέσως όμως της είπα: «Όχι, όχι, δεν μπορεί να βρίσκεσαι στο όνειρο αυτό, δεν είσαι ζωντανή!».

One of Richard Feynman’s little-known sketches

Ξαναονειρεύτητα την Αρλήν κι είχα πάλι την ίδια αντίδραση: «Δεν μπορεί να είσαι στο όνειρο αυτό!»

«Όχι, όχι!», απάντησε. «Σε κορόιδεψα. Είχα κουραστεί μαζί σου και σκάρωσα το κόλπο αυτό για να τραβήξω το δρόμο μου. Τώρα όμως σε θέλω και πάλι, γύρισα». Λοιπόν, φαίνεται ότι το μυαλό μου δούλευε εναντίον του εαυτού του. Έπρεπε, ακόμη και σε ένα καταραμένο όνειρο, να βρεθεί εξήγηση πως γίνεται να υπάρχει ακόμη Αυτή!

«Ο άνθρωπος που πέθανε δυο φορές». Γράφει ο Ηλίας Μαγκλίνης στην Καθημερινή (13/12/2020)

Πρέπει να είχα πιεστεί ψυχολογικά. Δεν είχα κλάψει καθόλου ώσπου, κάπου ένα μήνα μετά το θάνατο της Αρλήν, καθώς περνούσα μπροστά από ένα κατάστημα στο Όουκ Ρτζ, είδα στη βιτρίνα ένα όμορφο φόρεμα και σκέφτηκα «Αυτό θα άρεσε στην Αρλήν». Και τότε ξέσπασα.

Απόσπασμα από το βιβλίο «Τι σε νοιάζει εσένα τι σκέφτονται οι άλλοι; Οι περιπέτειες ενός παράξενου τύπου», του Richard Feynman, όπως τις αφηγήθηκε στον Ralph Leighton, μετάφραση Νίκος Κοτρίδης, εκδόσεις τροχαλία.

Πηγές: https://www.brainpickings.org/2017/10/17/richard-feynman-arline-letter/ - physicsgg

 











 

Σάββατο 12 Δεκεμβρίου 2020

Ζούμε σε μια προσομοίωση σύμπαντος; Are we living in a computer simulation?

Ζούμε σε μια προσομοίωση; Είναι το Σύμπαν μια ψηφιακή ψευδαίσθηση; Virtual reality technology is making great advances, but it has also helped popularise a theory long debated by philosophers and now gaining supporters in Silicon Valley – that the outside world is itself a simulation. Maurits Cornelis Escher, Other world II, January 1947, Three-block woodcut, 26.1 x 31.8 cm, Private collection, Italy All M.C. Escher works © 2018 The M.C. Escher Company

Η ιδέα ότι η πραγματικότητα που βιώνουμε είναι μια προσομοίωση σε υπολογιστή ανήκει στην επιστημονική φαντασία. Μετά την προβολή της ταινίας «The Matrix» η ιδέα αυτή έγινε αρκετά δημοφιλής. 

High-profile physicists and philosophers gathered to debate whether we are real or virtual—and what it means either way. Credit: Getty Images

Μάλιστα, κάποιοι επιστήμονες , όπως οι Eric Drexler, Ray Kurzweil, Hans Moravec έχουν υποστηρίξει ότι η προσομοίωση του νου είναι δυνατή και επικείμενη. Κάποιοι άλλοι, όπως ο Nick Bostrom, έφτασαν στο σημείο να συζητούν την πιθανότητα αυτό να έχει ήδη συμβεί και να ζούμε ήδη σε μια προσομοίωση.

Γιατί άραγε να πιστεύει κάποιος ότι ζει σε προσομοίωση σύμπαντος;

Ζούμε σε μια προσομοίωση; Είναι το Σύμπαν μια ψηφιακή ψευδαίσθηση; Στο επεισόδιο αυτό ταξιδεύουμε στον χώρο μεταξύ επιστήμης, επιστημονικής φαντασίας και φιλοσοφίας και γνωρίζουμε την υπόθεση της προσομοίωσης του Nick Bostrom.

Σύμφωνα με πολλά σενάρια επιστημονικής φαντασίας, σε μελλοντικές διαστημικές αποικίες μεγάλο μέρος της ύλης του Σύμπαντος μετασχηματίζεται σε υπερ-υπολογιστές οι οποίοι προσομοιώνουν ένα μεγάλο πλήθος στιγμών παρατηρητή, υποκειμενικά πανομοιότυπων με τη δική μας. Ο Nick Bostrom και άλλοι έχουν υποστηρίξει ότι σ’ αυτή την περίπτωση η δική μας τρέχουσα στιγμή παρατηρητή θα είναι πιθανότατα μια από τις προσομοιωμένες, αν λάβουμε υπόψη μας, το τεράστιο πλήθος τους.

O Nick Bostrom δημοσίευσε ένα σχετικό άρθρο με τίτλο «Are You Living in a Simulation?», όπου καταλήγει με την πρόταση ότι: ‘Αν δεν ζούμε τώρα σε μια προσομοίωση, τότε οι απόγονοί μας είναι εξαιρετικά απίθανο να εκτελέσουν προσομοίωση των προγόνων τους’.

Στο βίντεο που ακολουθεί ο Don Lincoln του Fermilab συζητά την πιθανότητα το σύμπαν μας να είναι πραγματικά μια προσομοίωση. Ας δούμε τι έχει να μας πει επί του θέματος:

There are many provocative ideas that have been proposed about the ultimate nature of our universe.  In this episode of Subatomic Stories, Fermilab’s Dr. Don Lincoln discusses the possibility that our universe might actually be a simulation.

Πηγές: https://www.scientificamerican.com/article/are-we-living-in-a-computer-simulation/ - https://www.nytimes.com/2019/08/10/opinion/sunday/are-we-living-in-a-computer-simulation-lets-not-find-out.html - https://physicsgg.me/2020/12/10/

 

 





 

Τετάρτη 9 Δεκεμβρίου 2020

Χατ τρικ στην ανίχνευση μποζονίων. Triple threat: The first observation of three massive gauge bosons produced in proton-proton collisions

Παρατηρήθηκε για πρώτη φορά η σπάνια ταυτόχρονη παραγωγή τριών μποζονίων (φορέων της ασθενούς αλληλεπίδρασης) σε συγκρούσεις μεταξύ πρωτονίων. The CMS Collaboration, a large group of researchers from numerous physics institutes worldwide have recently observed the production of three massive gauge bosons in proton-proton collisions for the first time ever. Display of proton-proton collision events recorded by the CMS experiment. A candidate event of simultaneous production of W+, two Z bosons, with multiple electrons and muons (i.e., 5 electrons in this case). Credit: CMS Collaboration.

Το Καθιερωμένο Πρότυπο, η αποτελεσματικότερη θεωρία που περιγράφει τις θεμελιώδεις αλληλεπιδράσεις των στοιχειωδών σωματιδίων, προβλέπει την ύπαρξη αλληλεπιδράσεων που είναι γνωστές ως «τρι-μποζονικές αλληλεπιδράσεις». Πρόκειται για αλληλεπιδράσεις κατά την διάρκεια των οποίων παράγονται ταυτόχρονα τρία μποζόνια βαθμίδας με μάζα (οι φορείς της ασθενούς αλληλεπίδρασης – W±, Z), από ένα γεγονός στον Μεγάλο Επιταχυντή Αδρονίων (LHC). Οι ‘τρι-μποζονικές αλληλεπιδράσεις’ είναι απίστευτα σπάνιες σε σχέση με αυτές που παράγουν το μποζόνιο Higgs, αφού συμβαίνουν μια φορά στις 100 δισεκατομμύρια συγκρούσεων μεταξύ πρωτονίων. Παρά λοιπόν το γεγονός ότι η θεωρία προέβλεπε την ύπαρξη αυτών των αλληλεπιδράσεων, οι φυσικοί δεν είχαν καταφέρει να τις ανιχνεύσουν στα πειράματά τους.

Η πειραματική ομάδα CMS, σύμφωνα με την δημοσίευσή της στο Physical Review Letters, ανακοίνωσε ότι παρατηρήθηκε για πρώτη φορά η ταυτόχρονη παραγωγή τριών μποζονίων βαθμίδας με μάζα από συγκρούσεις πρωτονίων.

Figure: An event collected by the CMS experiment in 2016, where two W bosons and one Z boson were produced. One W boson decayed to a muon and its neutrino, the other to an electron and its neutrino. Neutrinos cannot be detected by the CMS experiment so are inferred from the missing transverse momentum pTmiss. The Z boson decayed to two oppositely charged muons.

Οι ερευνητές του CMS μελετώντας το τεράστιο σύνολο δεδομένων που κατέγραψε ο ανιχνευτής από το 2016 έως το 2018, διαπίστωσαν πως οι τρι-μποζονικές αλληλεπιδράσεις εμφανίζονταν αρκετά συχνά ώστε να διακρίνονται από τα γεγονότα υποβάθρου. Έτσι, ξεκίνησαν να ψάχνουν συστηματικά για τρι-μποζόνια ή VVV (όπου V τα μποζόνια W+, W– και Z) ανιχνεύοντας γεγονότα τρι-μποζονικών αλληλεπιδράσεων με τυπικές αποκλίσεις 5,7σ. Αυτό σημαίνει ότι η πιθανότητα να πρόκειται για άσχετα γεγονότα υποβάθρου είναι 1 στο εκατομμύριο.

Η παρουσία των μποζονίων W± και Z που παράγονται σε συγκρούσεις μεταξύ πρωτονίων προκύπτει διαμέσου της ανίχνευσης των προϊόντων διάσπασής τους. Ένα από τα πιο ξεκάθαρα σημάδια της παρουσίας τους είναι η ανίχνευση ηλεκτρονίων και μιονίων μεγάλης ορμής. Δεδομένου ότι η διαδικασία που θέλουμε να ανιχνεύσουμε περιλαμβάνει τρία μποζόνια βαθμίδας με μάζα, όταν πραγματοποιείται ένα τέτοιο γεγονός τότε παράγονται πολλαπλά ηλεκτρόνια και μιόνια. Έτσι, αναζητήθηκαν τα γεγονότα από τις συγκρούσεις μεταξύ πρωτονίων στα οποία εμφανίζονταν πολλά ηλεκτρόνια και μιόνια, ώστε να διαχωριστεί αυτή η πολύ σπάνια διαδικασία από τα γεγονότα υποβάθρου.

Αυτή η πειραματική επιτυχία συμβάλλει στη βελτίωση της κατανόησης των διαφορετικών τύπων μποζονίων, συμπεριλαμβανομένου του προσφάτως ανακαλυφθέντος μποζονίου Higgs. Ανοίγει ένα νέο παράθυρο στις περίπλοκες λεπτομέρειες του Καθιερωμένου Προτύπου.

H ελληνική συμμετοχή στην ερευνητική ομάδα του CMS.

Οι φυσικοί του CMS σχεδιάζουν την πραγματοποίηση περαιτέρω ερευνών για την εν λόγω διαδικασία που ανίχνευσαν, καθώς και την επέκταση της ανάλυσής τους προς αναζήτηση γεγονότων όπου τα μποζόνια W± και Z αποσυντίθενται σε κουάρκ και νετρίνα. Αυτό θα τους επιτρέψει να ελέγξουν τις αντίστοιχες θεωρητικές προβλέψεις του Πρότυπου Μοντέλου και ενδεχομένως να αποκαλύψουν νέα φυσικά φαινόμενα που δεν μπορούν να εξηγηθούν από τις υπάρχουσες θεωρίες φυσικής.

Πηγές: Observation of the production of three massive gauge bosons at √s=13  TeV. Physical Review Letters (2020). DOI: 10.1103/PhysRevLett.125.151802. - https://cms.cern/news/Triple-Treat%21-CMS-observes-production-of-three-massive-vector-bosons - https://phys.org/news/2020-12-triple-threat-massive-gauge-bosons.html - https://physicsgg.me/2020/12/08

 

 






 

Δευτέρα 7 Δεκεμβρίου 2020

Μανόλης Αναγνωστάκης, «Άρχισε μια σιγανή βροχή…»

Pierre Bonnard (1867-1947), Rue Tholozé (Montmartre in the Rain) (1897), oil on paper on wood, 70 x 95 cm, Van Gogh Museum, Amsterdam, The Netherlands. The Athenaeum.

Έπεφτε μια κίτρινη παλιά βροχή…

                                 Γ. Κ.

Άρχισε μια σιγανή βροχή αργά προς το βράδυ.

Στις πολιτείες ο ουρανός φαίνεται μιαν απέραντη λασπωμένη πεδιάδα

Κι η βροχή είναι μια καλοσύνη, όσο να πεις, δε μοιάζει διόλου με το θάνατο

Μπορείς να βαδίζεις κάποτε χωρίς κανένα σκοπό ή με σκοπό —σου είναι αδιάφορο—

Μιαν εποχή μακρινή και νεκρή σα μια βίαια σκισμένη πολυτέλεια.

Εγώ συλλογίζομαι πώς και γιατί άραγε μια βροχή μπορεί να σου θυμίζει τόσα πράγματα

—Χωρίς αμφιβολία είναι τόσο ανόητο να τα στοχάζεσαι όλα αυτά μια τέτοιαν ώρα—

Συλλογίζομαι όμως στις ζεστές χειμωνιάτικες κάμαρες μιαν αλλιώτικη μυρουδιά

Ύστερα από τις 6 με τα κλειστά παραθυρόφυλλα και τ’ αναμμένο φως

Ή μια γωνιά δίπλα στο τζάμι σ’ ένα μεγάλο καφενείο με τις αδιάφορες φωνές.

Τα συλλογίζεσαι όλα αυτά με τον πιο απλούστερο τρόπο ολωσδιόλου παιδιάστικα

Μπορείς να λησμονείς το κάθε τι, τί τάχα να γυρεύεις εδώ μια τέτοιαν ώρα

Εσύ, ο διπλανός σου, όλος αυτός ο κόσμος που πορεύεται δίπλα σου μες στο σκοτάδι

Αυτή η ανήσυχη σιωπή που πληγώνει περισσότερο κι απ’ το πιο κοφτερό λεπίδι

Να λησμονείς για μιαν ελάχιστη στιγμή πως ίσως δεν τέλειωσε ούτε και απόψε για σένανε το κάθε τι

Τόσο π’ αν τρίξει κάτι αναπάντεχα είναι να σου ξυπνήσει την ακριβήν υπόθεση μιας επιστροφής

Τη χειμωνιάτικη ζεστή κάμαρα, το καφενείο με τις πολύχρωμες φωνές.

 

…Έτσι βρέχει λοιπόν μια κίτρινη βροχή χωρίς τέλος.

Μια κίτρινη παλιά βροχή, τη νύχτα, σα μαστίγιο.

Simon Kozhin (1979-), Rain (2006), oil on canvas on cardboard, 30 × 35 cm, Foundation “Cultural Heritage “, St. Petersburg. Courtesy of Simon Kozhin, via Wikimedia Commons.

Μ. Αναγνωστάκης, «Τα ποιήματα», Νεφέλη.




 

Κυριακή 6 Δεκεμβρίου 2020

Κινέζοι ερευνητές πέτυχαν το «κβαντικό πλεονέκτημα» στους υπολογιστές. Chinese photonic quantum computer demonstrates quantum supremacy

Μία ομάδα Κινέζων επιστημόνων ανακοίνωσε ότι πραγματοποίησε την πρώτη αδιαμφισβήτητη επίδειξη του λεγόμενου «κβαντικού πλεονεκτήματος» (όρου που αντικατέστησε τον παλαιότερο «κβαντική υπεροχή»), αξιοποιώντας την κβαντομηχανική για να πραγματοποιήσει υπολογισμούς, οι οποίοι είναι αδύνατο να γίνουν σε συμβατικούς ηλεκτρονικούς υπολογιστές. Photon-based quantum computer does a calculation that ordinary computers might never be able to do. This photonic computer performed in 200 seconds a calculation that on an ordinary supercomputer would take 2.5 billion years to complete. Credit: Hansen Zhong

Είναι η δεύτερη φορά που γίνεται μία τέτοια ανακοίνωση, καθώς είχε προηγηθεί η αμερικανική Google το 2019, όμως είχαν εκφραστεί αμφιβολίες κατά πόσο -όντως- επρόκειτο για κβαντική υπεροχή. Άλλοι επιστήμονες είχαν υποστηρίξει τότε ότι ήταν εφικτός ένας καλύτερος κλασσικός αλγόριθμος, που θα μπορούσε να ξεπεράσει τον κβαντικό υπολογιστή Sycamore της Google.

For the first time, a quantum computer made from photons—particles of light—has outperformed even the fastest classical supercomputers. The setup of lasers and mirrors effectively “solved” a problem far too complicated for even the largest traditional computer system. Credit: Alamy

Οι ερευνητές, με επικεφαλής τον Τζιαν-Γουέι Παν του Πανεπιστημίου Επιστήμης και Τεχνολογίας της Κίνας στη Χεφέι, οι οποίοι έκαναν τη σχετική δημοσίευση στο περιοδικό «Science», σύμφωνα με το «Nature» και το «New Scientist», δήλωσαν ότι οι κβαντικοί υπολογισμοί που πέτυχαν μέσα σε μόνο λίγα λεπτά (200 δευτερόλεπτα), με τη βοήθεια ακτίνων φωτός λέιζερ, θα χρειάζονταν 600 εκατομμύρια χρόνια για να εκτελεσθούν στον ισχυρότερο υπερυπολογιστή του κόσμου, τον ιαπωνικό Fugaku, ή δυόμισι δισεκατομμύρια χρόνια (τη μισή ηλικία της Γης!) για να εκτελεσθούν στον ισχυρότερο κινεζικό υπερυπολογιστή και Νο4 στον κόσμο, τον Sunway TaihuLight.

«Δείξαμε ότι μπορούμε να χρησιμοποιήσουμε φωτόνια, τη θεμελιώδη μονάδα του φωτός, για να πετύχουμε κβαντική υπολογιστική ισχύ πολύ πέρα από τους κλασικούς υπολογιστές», ανέφερε ο Παν. Είναι η πρώτη φορά που το κβαντικό πλεονέκτημα επιτεύχθηκε με τη χρήση της φωτονικής.

Για «σημαντικό ορόσημο» έκανε λόγο ο φυσικός Ίαν Γουόλμσλεϊ του Κολλεγίου Imperial του Λονδίνου. Διευκρίνισε, όμως, ότι -αντίθετα με τον κβαντικό υπολογιστή Sycamore της Google- ο κινεζικός κβαντικός αλγόριθμος δεν είναι δυνατό να προγραμματιστεί, συνεπώς δεν μπορεί να χρησιμοποιηθεί για την επίλυση πρακτικών προβλημάτων, κάτι που όμως πιθανώς καταστεί εφικτό στο μέλλον, ώστε να αξιοποιηθεί π.χ. στην κβαντική κρυπτογράφηση ή στην κβαντική χημεία.

Πηγές: Quantum computational advantage using photons, Science (2020). DOI: 10.1126/science.abe8770, science.sciencemag.org/content … 2/02/science.abe8770 - https://www.nature.com/articles/d41586-020-03434-7 - https://www.scientificamerican.com/article/light-based-quantum-computer-exceeds-fastest-classical-supercomputers/ - https://www.amna.gr/home/article/511212/-Kinezoi-ereunites-petuchan-to-kbantiko-pleonektima-stous-upologistes

 




 

Παρασκευή 4 Δεκεμβρίου 2020

Οι φυσικοί μέτρησαν τον «μαγικό αριθμό» που καθορίζει το σύμπαν. Physicists Nail Down the ‘Magic Number’ That Shapes the Universe

Μια ομάδα φυσικών στο Παρίσι πραγματοποίησε την ακριβέστερη μέτρηση της σταθεράς λεπτής υφής, ‘σκοτώνοντας’ τις ελπίδες για την ανακάλυψη κάποιου νέου είδους δύναμης στη φύση. A team in Paris has made the most precise measurement yet of the fine-structure constant, killing hopes for a new force of nature. The fine-structure constant was introduced in 1916 to quantify the tiny gap between two lines in the spectrum of colors emitted by certain atoms. The closely spaced frequencies are seen here through a Fabry-Pérot interferometer. Computational Physics Inc.

Μια ομάδα φυσικών στο Παρίσι πραγματοποίησε την ακριβέστερη μέτρηση της σταθεράς λεπτής υφής, ‘σκοτώνοντας’ τις ελπίδες για την ανακάλυψη κάποιου νέου είδους δύναμης στη φύση.

Διάφορες εκφράσεις της σταθεράς λεπτής υφής. Η σταθερά αυτή είναι αδιάστατος αριθμός – δεν έχει μονάδες μέτρησης.

Η σταθερά λεπτής υφής συμβολίζεται με το ελληνικό γράμμα α και εκφράζει την ισχύ της ηλεκτρομαγνητικής δύναμης. Είναι αδιάστατη σταθερά και ισούται περίπου με 1/137 (παρά την «πίστη» του Arthrur Eddington, ότι η τιμή της ισούται ακριβώς με 1/137). Η τιμή αυτή φαίνεται μικρή όταν συγκρίνεται με την ισχύ των ισχυρών (πυρηνικών) δυνάμεων, αλλά πολύ μεγαλύτερη όταν συγκρίνεται με την ισχύ των ασθενών (πυρηνικών) δυνάμεων, και τεράστια αν συγκριθεί με την ισχύ των βαρυτικών δυνάμεων.

http://hyperphysics.phy-astr.gsu.edu/hbase/Forces/funfor.html

Από τις θεμελιώδεις παγκόσμιες σταθερές η ταχύτητα του φωτός c, απολαμβάνει την μεγαλύτερη δόξα. Όμως, η αριθμητική τιμή της ταχύτητας του φωτός δεν μας λέει τίποτα για την φύση. Η τιμή της διαφέρει ανάλογα με το αν μετράται σε μέτρα ανά δευτερόλεπτο ή σε χιλιόμετρα ανά ώρα. Η σταθερά λεπτής υφής, αντίθετα, δεν έχει διαστάσεις ή μονάδες. Είναι ένας καθαρός αριθμός – «ένας ακατανόητος μαγικός αριθμός», σύμφωνα με τον Richard Feynman, ενώ ο Paul Dirac θεωρούσε την προέλευση του αριθμού αυτού ως «το πιο θεμελιώδες άλυτο πρόβλημα της φυσικής». Η σταθερά της λεπτής υφής είναι παντού, δεδομένου ότι χαρακτηρίζει την ισχύ της ηλεκτρομαγνητικής δύναμης με την οποία αλληλεπιδρούν όλα τα φορτισμένα σωματίδια όπως ηλεκτρόνια και πρωτόνια. Στον καθημερινό μας κόσμο, όλα είναι είτε βαρύτητα είτε ηλεκτρομαγνητισμός. Και γι‘ αυτό η σταθερά α είναι τόσο σημαντική.

Process for measuring the fine-structure constant. Morel et al. report a highly precise determination of the fine-structure constant — the physical constant that defines the strength of the electromagnetic force between elementary particles. a, In the measurement of this constant, a beam of light from a laser causes an atom to recoil. The red and blue colours correspond to the light wave’s peaks and troughs, respectively. The kinetic energy of the recoil is used to deduce the atom’s mass. b, The value of the atom’s mass is then combined with the precisely known ratio of the atom’s mass to the electron’s mass to infer the mass of an electron. c, Finally, the electron’s mass and the binding energy of a hydrogen atom are used to determine the fine-structure constant. The binding energy is known from spectroscopy, whereby light emitted from a hydrogen atom is analysed.

Οι φυσικοί θέλουν να μετρήσουν τη σταθερά λεπτής υφής όσο το δυνατόν ακριβέστερα. H ακριβής μέτρησή της επιτρέπει τον έλεγχο της θεωρίας που περιγράφει τις αλληλεπιδράσεις των στοιχειωδών σωματιδίων – το πολύπλοκο σύνολο εξισώσεων που είναι γνωστό ως Καθιερωμένο Πρότυπο της φυσικής των στοιχειωδών σωματιδίων.

Σε χτεσινή δημοσίευση στο περιοδικό Nature με τίτλο «Determination of the fine-structure constant with an accuracy of 81 parts per trillion» , μια ομάδα τεσσάρων φυσικών με επικεφαλής την Saïda Guellati-Khélifa στο Εργαστήριο Kastler Brossel στο Παρίσι ανέφερε την ακριβέστερη μέχρι σήμερα μέτρηση της σταθεράς λεπτής υφής. Η ομάδα μέτρησε την τιμή της σταθεράς μέχρι το 11ο δεκαδικό ψηφίο, βρίσκοντας την τιμή (στην εργασία αναφέρεται η τιμή του 1/α):

1/α=137.035999206(11)

με τα δύο τελευταία ψηφία να είναι αβέβαια. Το σφάλμα είναι ελάχιστο, μόλις 81 μέρη ανά τρισεκατομμύριο και η μέτρηση είναι περίπου τρεις φορές ακριβέστερη από την προηγούμενη καλύτερη μέτρηση του 2018 από την ομάδα Müller στο Berkeley. Η Guellati-Khélifa κατείχε το ρεκόρ ακριβέστερης μέτρησης πριν από τον Müller το 2011!

Η Saïda Guellati-Khélifa στο εργαστήριό της στο Παρίσι. Saïda Guellati-Khélifa in her laboratory in Paris. Jean-François Dars and Anne Papillaut

Η Guellati-Khélifa βελτιώνει το πείραμά της συνεχώς τα τελευταία 22 χρόνια(!). Προσδιορίζει την σταθερά λεπτής υφής, μελετώντας τις ανακρούσεις των ατόμων ρουβιδίου όταν απορροφούν ένα φωτόνιο. Ο Müller κάνει το ίδιο με τα άτομα καισίου. Ο Müller παραδέχθηκε τους ανταγωνιστές του, δηλώνοντας πως «μια μέτρηση τρεις φορές ακριβέστερη είναι πολύ μεγάλη υπόθεση. Ας μην ντρεπόμαστε λοιπόν να το ονομάσουμε ένα μεγάλο επίτευγμα.»

Η παλαιότερη μέτρηση του Müller 2018 είχε χαιρετιστεί ως ο μεγαλύτερος θρίαμβος του Καθιερωμένου Προτύπου. Το νέο αποτέλεσμα της Guellati-Khélifa είναι ακόμη μεγαλύτερος. Πρόκειται για την ακριβέστερη συμφωνία μεταξύ θεωρίας και πειράματος μέχρι σήμερα.

Πηγές: https://www.nature.com/articles/s41586-020-2964-7 - https://www.nature.com/articles/d41586-020-03314-0 - https://www.quantamagazine.org/physicists-measure-the-magic-fine-structure-constant-20201202/ - https://physicsgg.me/2020/12/04/